
The Exim Mail Transfer Agent

A configuration tutorial

http://www.exim.org

Configuration file
• Exim uses a single runtime configuration file, divided into a
 number of sections

• The first section contains global option settings

• The other sections start with “begin sectionname”

• They are all optional, and may appear in any order

• Comments, macros, if-then-else, and inclusions are available

• Option settings can refer to auxiliary data files, for example, a
 file of aliases (traditionally /etc/aliases)

1 June 2004

Configuration file sections
• Global options

General and input-related options
• Address rewriting rules

Specify rewriting of envelope and header addresses
• Retry rules

Control retries after temporary failures
• Router configuration

Specify recipient address processing
• Transport configuration

Specify how actual deliveries are done
• Authenticator configuration

Specify SMTP authentication methods
• Access Control Lists (ACLs)

Define policy controls for incoming messages

Default configuration file layout

Global option settings
begin ACL
Access control lists
begin routers
Router configuration
begin transports
Transport configuration
begin retry
Retry rules
begin rewrite
Rewriting rules
begin authenticators
Authenticator configuration

required for SMTP input

required for message delivery

2 June 2004

Common global options (1)
• SMTP input limits

smtp_accept_max = 200
smtp_accept_queue = 150
smtp_accept_reserve = 10
smtp_accept_reserve_hosts = 192.168.0.0/16
smtp_connect_backlog = 100

• Overloading

queue_only_load = 5
deliver_queue_load_max = 7

• Message size limits

message_size_limit = 10M
return_size_limit = 65535

Common global options (2)
• Spool space check

check_spool_space = 100M
check_spool_inodes = 300

• Splitting the input directory
split_spool_directory = true

• Parallel remote delivery (per-message, not system wide)
remote_max_parallel = 10

• Verifying host names
host_lookup = 192.168.4.0/24 : \
192.168.3.0/24

• Qualify domain
qualify_domain = plc.co.uk

3 June 2004

Common global options (3)
• Logging

log_selector = +incoming_interface \
 +incoming_port \
 +smtp_confirmation \
 -queue_run

• Discarding frozen messages

ignore_bounce_errors_after = 6h
timeout_frozen_after = 1d

• Warning messages

delay_warning = 4h:8h:24h
delay_warning_condition = \
${if match{$h_precedence:}\
{(?i)bulk|junk|list}{no}{yes}}

Router overview
• Exim contains a number of different routers

Example: the dnslookup router does DNS processing
 the redirect router does address redirection
 (aliasing and forwarding)

• The configuration defines which routers are used, in which
 order, and under what conditions

Example: routers are often restricted to specific domains

• The same router may appear more than once, usually with
 different configurations

• The order in which routers are defined is important

4 June 2004

Exim routing

Address

Check pre-
conditions

First
router

 Second router
Third router

...
Last router

address
bounces

Assign to
transport

router

accepts
address

redirection
creates new
addresses

 More?

yes

no

router
declines

router
fails

address

address
retried
later

retry timeout

router
defers

address

Simple routing configuration
• Check for non-local domains: run dnslookup router

Accept: assign to smtp transport
Decline: “no_more” set, so address bounces

• Check for system aliases: redirect router
Accept: generates new address(es)
Decline: passed to next router

• Check for local user forwarding: another redirect router
Accept: generates new address(es)
Decline: passed to next router

• Check for local user: run accept router
Accept: assign to appendfile transport

• No more routers: address bounces

5 June 2004

Exim transports
• Transports are the components of Exim that actually deliver
 copies of messages

The smtp transport delivers over TCP/IP to a remote host
The appendfile transport writes to a local file
The pipe transport writes to another process via a pipe
The lmtp transport does likewise, using the LMTP protocol
The autoreply transport is anomalous, in that it creates an

 automatic response instead of doing a real delivery

• The order in which transports are defined is not important

• A transport is used only when referenced from a router

• Transports are run in subprocesses, under their own uid, after
 all routing has been done

Retry rules
• Fixed or increasing time intervals

• Change of rule as time passes

• Predication on specific errors as well as on host or domain

• Default retry rule:

* * F,2h,15m; G,16h,1h,1.5; F,4d,6h;

For all hosts
and domains

For all errors

Every 15 mins
for 2 hours

Start at 1 hour interval,
then increase by 1.5 until

16 hours have passed

Every 6
hours up
to 4 days

• Use -brt to check retry rules:

exim -brt aol.com
 Retry rule: aol.com F,2h,15m; F,4d,30m;

6 June 2004

Temporary delivery errors
• Host error: not related to message or recipients

Host is delayed, for all messages
No message is sent to it until its retry time has passed
Retry rule is selected by host or domain

• Message error: related to message, but not to recipients
Message is delayed, to that host only
Retry rule is selected by host or domain
Does not affect other messages to that host

• Recipient error: specific to one recipient
Recipient is delayed in all messages, but only in queue runs
Retry rule is selected by domain or full address

• Longstop check: bounce a message that has been on the queue
 for longer than the host’s retry period

Address rewriting (1)
• Global rewriting is done when an address is first seen

Envelope and header addresses when a message is received
Addresses generated by aliasing and forwarding

• Rewriting is not intended to be a routing mechanism

• Use with care, for “regularizing” your own addresses

• Use to change host name to corporate domain

@.plc.co.uk $local_part@plc.co.uk

theboss@hq.plc.co.uk => theboss@plc.co.uk

• Use quotes if pattern or replacement contains white space

• Flag letters control which addresses are rewritten

7 June 2004

Address rewriting (2)
• Rewrite login name to real name

*@plc.co.uk "${lookup {$local_part}\
 dbm{/etc/realnames}\
 {$value} fail}@$domain" bcfrF
 theboss@plc.co.uk => J.Caesar@plc.co.uk

• bcfr rewrites bcc, cc, from, and reply-to header lines

• F rewrites the envelope “from” field

• Rewriting rules are applied one by one, in order
Both the above rules would be applied

• Header addresses and return paths can also be rewritten at
 transport time

Item lists
• Exim configurations can contain several kinds of list

• Domain list
mydomain.example : *.plc.example.com

• Host list
myhost.example : *.plc.example.com : \
192.168.3.4 : 192.168.35.0/24

• Address list
user@dom.com : *@dom.com : user@*.dom.com

• Local part list
postmaster : \N^abc\d{3,5}$: \

^(?=.*?[a-z])(?=.*?[A-Z])\
(?=.*?\d).{9}$\N

8 June 2004

Lookups in item lists
• Item lists are always expanded before being scanned

The list may be modified by a lookup expansion item

• The lookup facility can also be used as an indexing mechanism

• A plain file name is just an out-of-line list
domains = /etc/relaydomains

• A true lookup item starts with a lookup type
domains = dbm;/etc/relaydomains.db
domains = mysql;select domain from relays \

where domain = ’$domain’;

• The result of this type of lookup is often not used
• A host list may contain both name and address lookups

hosts = dbm;/etc/relaybyname.db :\
net-dbm;/etc/relaybyip.db :\
net27-dbm;/etc/relaybyip.db

• The last example might lookup “192.168.224.0/27”

Host names in host lists
• Host lists are used to check client hosts

• Initially, all Exim has is the client IP address
IP address items in host lists can always be checked

• Name items cause DNS lookups, which may fail or time out

• Complete host names cause a forward DNS lookup
hosts = mail.exim.org

Look up the address record(s) and then compare IP addresses

• Partial names or lookups cause a reverse DNS lookup
hosts = *.exim.org
hosts = cdb;/etc/relay.hosts

Look up the PTR record(s) and then compare names

9 June 2004

Negation in item lists
• Lists are scanned from left to right until an item matches

• When items are negated, the order matters a lot

domains = a.b.c : !*.b.c : *.c
a.b.c matches this list
anything.b.c (except a.b.c) does not match this list
anything.c (that is not *.b.c) matches this list
Any other domain does not match this list

• If a list ends with a negated item, * is implied at the end

hosts = !192.168.45.233
192.168.45.233 does not match this list
Any other IP address does match this list

Named item lists
domainlist local_domains = @ : plc.com
hostlist relay_hosts = 192.168.32.0/24

• Abstraction: list is specified in one place only
References are shorter and easier to understand

• Optimization: matches are cached where possible
Example: several routers testing the same domain list
Cannot cache by default if list contains expansion items

• A named list is referenced by prefixing its name with +
hosts = 127.0.0.1 : +relay_hosts

• A named list can be negated
domains = !+local_domains
This is not possible with macros

10 June 2004

Named lists in the default configuration
• The default configuration uses three named lists

domainlist local_domains = @
 domainlist relay_to_domains =
 hostlist relay_from_hosts = 127.0.0.1

• Local domains are going to be delivered on this host
@ means “the local name of the local host”

• No domains are defined for relaying by default

• The local host is permitted to relay through itself
Some clients send mail this way

• These lists are used later to define these controls

Default routers (1)
• The first router handles non-local domains

dnslookup:
 driver = dnslookup
 domains = ! +local_domains
 ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
 transport = remote_smtp
 no_more

• The precondition checks for a non-local domain

• Silly DNS entries are ignored

• If the domain is found in the DNS, queue for remote_smtp

• Otherwise, no_more changes “decline” into “fail”

11 June 2004

Default routers (2)
• The second router handles system aliases

system_aliases:
 driver = redirect
 data = ${lookup{$local_part}lsearch\
 {/etc/aliases}}
 allow_fail allows :fail:
 allow_defer allows :defer:
 pipe_transport = address_pipe
 file_transport = address_file
 # user = exim

• Alias files look like this

postmaster: pat, james@otherdom.example
 majordomo: |/usr/bin/majordom ...
 alice: :fail: No longer works here

Default routers (3)
• The third router handles users’ .forward files

userforward:
 driver = redirect
 check_local_user
 file = $home/.forward
 no_verify
 no_expn
 check_ancestor
 pipe_transport = address_pipe
 file_transport = address_file
 reply_transport = address_reply
 allow_filter allows filter files

• data and file are mutually exclusive options for redirect
data expands to a redirection list
file expands to the name of a file containing a redirection list

12 June 2004

Default routers (4)
• The final router handles local users’ mailboxes

localuser:
 driver = accept
 check_local_user
 transport = local_delivery

• Recap: an address is routed like this:
Remote address => remote_smtp transport, fail
System alias => new address(es), fail, defer
User ’s .forward => new address(es)
Local user => local_delivery transport
Unrouteable address => bounce

• This is just one of many possible configurations
There are other routers that we have not met yet...

Default transports (1)
• Main transports

remote_smtp:
 driver = smtp

local_delivery:
 driver = appendfile
 file = /var/mail/$local_part
 delivery_date_add
 envelope_to_add
 return_path_add
 # group = mail
 # mode = 0660

• Default local delivery assumes a “sticky bit” directory
Setting group and mode is an alternative approach

13 June 2004

Default transports (2)
• Auxiliary transports

address_pipe:
 driver = pipe
 return_output

address_file:
 driver = appendfile
 delivery_date_add
 envelope_to_add
 return_path_add

address_reply:
 driver = autoreply

Local delivery in maildir format
• Supported by the appendfile transport

maildir_delivery:
 driver = appendfile
 maildir_format
 directory = /var/mail/$local_part
 ...

• Each message is delivered into a separate file
A directory rather than a file is specified
Messages are written into a subdirectory called tmp
Once written, they are moved into a subdirectory called new
The MUA moves a message into cur once it has seen it

• MUAs and POP/IMAP servers must support maildir

• Maildir allows multiple simultaneous deliveries and removals
No locking is required

• Downside: it is more expensive to calculate disk space usage

14 June 2004

Routing to smarthosts
• Replace the first router with

send_to_smarthost:
 driver = manualroute
 domains = ! +local_domains
 route_list = * smarthost1.example:\
 smarthost2.example
 transport = remote_smtp

• A route_list rule contains space-separated items
The first is a single domain pattern: * matches any domain
The second is a list of hosts for the matching domain
The third is bydns or byname (default tries both)
A transport name may also be given

Mail hubbing

Internet

Mail Hub

Internal MTA

Internal MTA

Internal MTA

 MX records
point here

Firewall often
sits here

15 June 2004

Routing on a mail hub (1)

• For a small number of domains, routes can be inline

hubbed_domains:
 driver = manualroute
 route_list = hdom1.plc.ex h1.plc.ex; \
 hdom2.plc.ex h2a.plc.ex:\
 h2b.plc.ex;\
 *.hq.plc.ex hqmta.plc.ex
 transport = remote_smtp

• Semicolons separate routing rules

• The list of hosts is expanded
route_list = *.plc.ex $domain

• Router declines if domain fails to match any rule

Routing on a mail hub (2)
• For a large number of domains, use an index from domain to
 internal host

hdom1.plc.ex: h1.plc.ex
 hdom2.plc.ex: h2a.plc.ex:h2b.plc.ex
 ...

• Use manualroute with route_data

hubbed_domains:
 driver = manualroute
 route_data = ${lookup{$domain}lsearch\
 {/etc/hubbed-domains}}
 transport = remote_smtp

• Expansion of route_data must yield a list of hosts
(And optionally byname/bydns and/or a transport name)

16 June 2004

Other features of manualroute
• Can specify “the hosts to which this MX points”

route_list = * domain.example/mx

• Lists of hosts can be randomized

hosts_randomize
 route_list = * host1:host2:host3

• Randomizing can be in groups

hosts_randomize
 route_list = * host1:host2:+:host3:host4

Group separator

Fallback hosts
• Fallback hosts can be specified on a router

dnslookup:
 driver = dnslookup
 fallback_hosts = smarthost.example:...
 ...

• Fallback hosts can also be specified on a transport

remote_smtp:
 driver = smtp
 fallback_hosts = smarthost.example:...

• The transport’s fallback hosts are used only if the router did
 not specify any

• hosts_randomize on the transport can be used to
 randomize fallback hosts

17 June 2004

Virtual domains (1)
• Straightforward cases are just an aliasing application

virtual_domains:
 driver = redirect
 domains = lsearch;/etc/virtual-domains
 data = ${lookup{$local_part}lsearch\
 {/etc/valias/$domain}}
 no_more

• Or use a dsearch lookup to save having a separate list

domains = dsearch;/etc/valias

Ensure Exim is built with dsearch support

• For large virtual domains, use something better than lsearch

Virtual domains (2)
• Add * to the search type to use a default

data = ${lookup{$local_part}lsearch*\
 {/etc/valias/$domain}}

• Exceptions can be handled with :fail:

*: info
 freebies: :fail: Sorry, we ran out
 admin: thedogsbody@domain1.ex
 sales: abc@domain2.ex
 info: xyz@domain3.ex

• * is not a wildcard; it just means “default”
Put it first in lsearch files for efficiency

• no_more is not needed (but does no harm)

18 June 2004

Virtual domains (3)
• Domains can be mixed in a single alias file

data = ${lookup{$local_part@$domain}cdb*@\
 {/etc/aliases-mixed.cdb}}

• Adding *@ to the search type gives a two-level default
First default is within the current domain
Second default is global

• The alias file could look like this

*: lmn@domain6
 abc@virt1: xyz@domain1
 *@virt1: abc@virt1
 abc@virt2: abc@domain2
 xyz@virt3: pqr@domain3

Common postmaster for virtual domains (1)
• Common postmaster for all domains

postmaster:
 driver = redirect
 local_parts = postmaster
 data = postmaster@your.domain
 repeat_use = false

• Put before virtual domains router to handle all domains
Use a domains setting if necessary

• If some virtual domains have their own postmaster
Put the postmaster router after the virtual domains router
Cannot use no_more on virtual domains router
For domains with defaults, use
postmaster: :unknown:

This forces the router to decline (same as an empty list)

19 June 2004

Common postmaster for virtual domains (2)
• The postmaster router must handle unknowns as well when it
 follows the virtual domains router

postmaster:
 driver = redirect
 domains = cdb;/etc/virtual-domains
 allow_fail
 data = ${if eq{$local_part}{postmaster}\
 {postmaster@your.domain}\
 {:fail: Unknown user}}

• This is not necessary if all the virtual domains have defaults
(But it is a useful safeguard)

Simple mailing lists
• One router can handle many lists

lists:
 driver = redirect
 domains = lists.foo.bar
 no_more
 file = /usr/lists/$local_part
 forbid_pipe
 forbid_file
 skip_syntax_errors
 errors_to = $local_part-request@$domain
 syntax_errors_to = \
 $local_part-request@$domain

• Error addresses are verified before being used

• Closed lists can also be handled (not shown here)

20 June 2004

External local delivery agent
• A transport for procmail

procmail_pipe:
 driver = pipe
 command = /usr/local/bin/procmail -d \
 $local_part

• Router to use procmail if the user has a .procmailrc file

localuser:
 driver = accept
 check_local_user
 transport = ${if exists{$home/.procmailrc}\
 {procmail_pipe}{local_delivery}}

• The pipe runs as the local user because of check_local_user

Mailboxes without local accounts (1)
• Use a lookup to check for valid local parts

no_account_users:
 driver = accept
 local_parts = dbm;/etc/no_accounts.db
 transport = no_account_delivery

• The data from the lookup is saved in $local_part_data

• For a message store where the files are not individually owned,
 the transport can be simple

no_account_delivery:
 driver = appendfile
 file = /var/mail/$local_part
 user = mail

21 June 2004

Mailboxes without local accounts (2)
• For individually owned files, keep relevant data with each valid
 local part (e.g. in /etc/no_account_db)

user1: uid=1234 gid=1023
 user2: uid=4567 gid=4242
 ...

• Then the transport can be

no_account_delivery:
 driver = appendfile
 file = /var/mail/$local_part
 user = ${extract{uid}{$local_part_data}}
 group = ${extract{gid}{$local_part_data}}

• This form of extract handles data in name=value format

Incoming message control features
• SMTP authentication

• SMTP session encryption using TLS (SSL)

• Local policy is defined in access control lists (ACLs)
Rules for accepting messages for local delivery
Rules for accepting messages for relaying to other hosts

• ACLs can do address verification
The delivery routers are used to check envelope addresses

• You can also link into Exim a local_scan() function
Supports custom checks on incoming messages
Written in C to a documented API

22 June 2004

Authentication
• SASL – Simple authentication and security layer

General framework for client-server authentication
Different authentication “mechanisms”

• Server advertises supported mechanisms
May be tailored for the client

• Client requests authentication by a specified mechanism
Data may be included with the request

• Server sends a “challenge” and the client responds
May be repeated any number of times

• Server accepts or rejects authentication
235 Successful authentication
435 Temporary problem with authentication
535 Authentication failed

Authentication in SMTP
• Mechanisms are advertised in response to EHLO

EHLO client.plc.ex
 250-server.plc.ex Hello client.plc.ex
 250-SIZE 10485760
 250-PIPELINING
 250-AUTH PLAIN LOGIN
 250 HELP

• Command is AUTH <mechanism> [data]

• Challenges use response code 334

• All data is base64 encoded
Thus, any byte value can be included

23 June 2004

PLAIN authentication (RFC 2595)
• Client sends a single set of data, containing three items

Identity to login as (not relevant for SMTP)
Identity whose password is to be checked
The password

• Binary zeros (NULs) separate the three data items
AUTH PLAIN AG15bmFtZQBteXNlY3JldA==

• Unencoded that is
AUTH PLAIN <nul>myname<nul>mysecret

• The first field is usually empty in SMTP

• Server responds immediately with success or failure
Password is transmitted in cleartext if session not encrypted
No challenge is issued; only one exchange is needed
(Alternate usage has no data with AUTH, and an empty

 challenge)

LOGIN authentication
• No formal definition; used by Pine and the c-client library

• Separate challenges (prompts) for username and password

AUTH LOGIN
 334 VXNlcm5hbWU6 (Username:)
 bXluYW1l (myname)
 334 UGVzc3dvcmQ6 (Password:)
 bXlzZWNyZXQ= (mysecret)
 235 Authentication successful

• The password is again passed in cleartext
Three exchanges are required

• Some clients are picky about the exact text of the prompts

24 June 2004

CRAM-MD5 authentication (RFC 2195)
• Server sends a challenge string that is different each time

AUTH CRAM-MD5
 334 PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2Uuc...
 (<1896.697170952@postoffice.reston.mci.net>)

• Client sends back a username, and the MD5 digest of the
 challenge string concatenated with the password (in hex)

dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZ1NzMzNG...
 (tim b913a602c7eda7a495b4e6e7334d3890)

• Server does the same computation, compares the result, and
 accepts or rejects

235 authentication successful

• The password does not traverse the network
But it must be stored in cleartext at both ends

SMTP authentication in Exim
• Different authenticator drivers for different mechanisms

Can be configured for server or client or both

• On an Exim server
AUTH is advertised if the client matches auth_advertise_hosts
This is expanded, so can depend on circumstances
For example, it can be empty unless the session is encrypted

• On an Exim client, authentication is attempted if
The server is in hosts_require_auth or hosts_try_auth

 (options of the smtp transport), and ...
A client authenticator matches an advertised mechanism

• On failure, Exim delivers unauthenticated for hosts_try_auth

25 June 2004

The plaintext authenticator
plain:

 driver = plaintext
 public_name = PLAIN
 server_prompts = :
 server_condition = ${if and {{eq{$2}
 {myname}}{eq{$3}{mysecret}}}{yes}{no}}
 server_set_id = $2
 client_send = ^myname^mysecret

login:
 driver = plaintext
 public_name = LOGIN
 server_prompts = Username:: : Password::
 server_condition = ${if crypteq{$2}\
 {${lookup{$1}lsearch{/etc/passwd}\
 {${extract{1}{:}{$value}}}fail}}{yes}{no}}
 server_set_id = $1
 client_send = : myname : mysecret

The cram_md5 authenticator
cram:

 driver = cram_md5
 public_name = CRAM-MD5
 server_secret = ${lookup{$1}dbm\
 {/cram/secrets}{$value}fail}
 server_set_id = $1
 client_name = tim
 client_secret = tanstaafl

• It is important to specify fail for a failing lookup

• Why is this version wrong?

server_secret = ${lookup{$1}dbm\
 {/cram/secrets}}

• Answer: it provides an empty secret for unknown users

26 June 2004

Encrypted SMTP connections
• TLS (transport layer security) aka SSL (secure socket layer)

Exim uses the OpenSSL or GnuTLS library for TLS support

• Server advertises support for the STARTTLS command
Client issues STARTTLS
Server gives positive response
An encryption key is then negotiated according to TLS rules
Subsequent data is encrypted before transmission
Session state is reset; a new EHLO is needed

• Exim can be configured to support the obsolete smtps protocol
But not both at once, since TLS is assumed for all connections

• Messages are not encrypted while in the hosts at either end
TLS gives protection only against eavesdroppers
In particular, it provides protection for AUTH passwords

• Client certificates can (alternatively) be used for authentication

TLS on an Exim server
• Three options must be set for TLS to be used at all

tls_certificate
the file containing the server ’s certificate

tls_privatekey
the file containing the server ’s private key

tls_advertise_hosts
specifies which clients should be told

• The exim user must be able to read the private key

• To verify client certificates
tls_verify_certificates

the file containing the expected certificates
tls_verify_hosts

specifies clients that must be verified
tls_try_verify_hosts

specifies clients that may be verified

27 June 2004

TLS on an Exim client
• Exim will try to use TLS by default if the server advertises it

...if Exim is built with TLS support!

• The following options are set on the smtp transport
Expansion allows for different values for different servers

• Set tls_certificate and tls_privatekey for client certificate
Used only if the server requests a certificate

• Set hosts_avoid_tls to suppress encryption for specific servers

• Set hosts_require_tls to insist on encryption
Otherwise, Exim will send in clear if STARTTLS is rejected

• Set tls_verify_certificates to verify the server ’s certificate

• Set tls_require_ciphers to restrict which ciphers are used

Access control lists
• Most ACLs are relevant for SMTP input

They do apply to local (stdin/stdout) SMTP (the -bs option)
An ACL is available for non-SMTP input

• For incoming SMTP messages the main ACLs are these
acl_smtp_rcpt defines the ACL to be run for each RCPT

Default is “deny”
acl_smtp_data defines the ACL to be run after DATA

Default is “accept”

• Tests on message content can be done only after DATA or in a
 non-SMTP ACL

• Other ACLs can be user for AUTH, ETRN, EXPN, EHLO,
 MAIL, STARTTLS, VRFY, and at start of an SMTP session

28 June 2004

MAIL

RCPT

RCPT ACL

Can check host,
sender, recipient.
Can reject individual
recipients.

DATA

data transfer

DATA ACL

Can check header
lines and body.
Can only reject
entire message.

accepted

A simple ACL
• In the main section of the configuration

acl_smtp_rcpt = acl_check_rcpt

• In the ACL section of the configuration

acl_check_rcpt:
 accept local_parts = postmaster
 domains = +my_domains

require verify = sender

accept domains = +my_domains
 verify = recipient

• Conditions are “anded” together
Conditions may be repeated
Evaluation is in order
Evaluation stops as soon as the outcome is known

• Implicit “deny” at the end

29 June 2004

Finding an ACL
• acl_smtp_rcpt etc. are expanded, and can then be:

An absolute file name (the file contains the ACL)
The name of an ACL in the configuration (previous example)
The text of an ACL itself

acl_smtp_vrfy = accept

• Choice of ACL can be made to depend on client host, sender
 address, recipient address, day of the week, or anything else
 that Exim knows about

acl_smtp_rcpt = ${if eq \
 ${mask:$sender_host_address/24}\
 {10.1.2.0/24}\
 {acl_local}{acl_remote}}

ACL statements
• Each statement contains a verb and a list of conditions

verb condition 1 (one per line)
condition 2
...

• If all the conditions are satisfied
accept Accepts SMTP command or non-SMTP message (else

may pass or reject – see later)
defer Gives a temporary rejection (= deny for non-SMTP)
deny Rejects (else passes)
discard Like accept but discards recipients
drop Like deny but drops an SMTP connection
require Passes (else rejects)
warn Takes some warning action (writes log or adds header)

Always passes

30 June 2004

ACL conditions and modifiers
• When a condition is false, no subsequent ones are evaluated
• Modifiers can appear among the conditions

message is used when access is denied

require message = sender must verify
 verify = sender
 message = recipient must verify
 verify = recipient

• Modifiers that follow a false condition are not processed
This example does not work

require verify = sender
 message = sender must verify

ACL modifiers (1)
• message defines a custom message for a denial or warning

deny message = You are black listed at \
 $dnslist_domain
 dnslists = rbl.mail-abuse.org : ...

• log_message defines a custom log message

require log_message = Recipient verify failed
 verify = recipient

• endpass is used with accept for a 3-way outcome

accept domains = +local_domains
 endpass
 verify = recipient

Above endpass, failure causes the next statement to be run
Below endpass, failure causes rejection

31 June 2004

ACL modifiers (2)
• control can specify message freezing or queueing

accept hosts = ...
 control = queue_only

• delay causes Exim to wait before continuing

deny !verify = recipient
 delay = 60s

• set sets ACL variables

warn condition = ...
 set acl_m4 = value

acl_mx variables remain set for the message
acl_cx variables remain set for the connection

• Values when message is accepted are available during delivery

The default ACL (1)
acl_check_rcpt:

accept hosts = :

deny domains = +local_domains

 local_parts = ^[.] : ^.*[@%!/|]

deny domains = !+local_domains
 local_parts = ^[./|] : \
 ^.*[@%!] : \
 ^.*/\\.\\./

accept local_parts = postmaster
 domains = +local_domains

require verify = sender

(continued)

32 June 2004

The default ACL (2)
accept domains = +local_domains

 endpass
 message = unknown user
 verify = recipient

accept domains = +relay_to_domains
 endpass
 message = unrouteable address
 verify = recipient

accept hosts = +relay_from_hosts

accept authenticated = *

deny message = relay not permitted

Good and bad relaying

Your host

Arbitrary
remote hosts

Specific
domains

relay_to_domains

Incoming
relay

Arbitrary
domains

Specific
hosts

relay_from_hosts
+

Authenticated hosts

Outgoing
relay

Open
relay

33 June 2004

DNS black lists (1)
• Default is to look up the client host’s IP address

deny message = rejected because $sender_\
 host_address is in a black list \
 at $dnslist_domain\n$dnslist_text
 dnslists = sbl.spamhaus.org : ...

warn message = X-Warning: \
 $sender_host_address is in a black \
 list at $dnslist_domain
 log_message = found in $dnslist_domain
 dnslists = dialups.mail-abuse.org

• You can also look up mail domains

deny message = sender’s domain is listed \
 at $dnslist_domain
 dnslists = dsn.rfc-ignorant.org/\
 $sender_address_domain

DNS black lists (2)
• The RHS value can be specified

deny dnslists = \
 rblplus.mail-abuse.org=127.0.0.2

• The value is in $dnslist_value during message expansion

• DNS list lookups are cached for each incoming message
(Not repeated for each recipient)

34 June 2004

Verifying addresses
• Verification asks: Could we deliver to this address?

• Check by running the address through the routers

• “Verify mode” is set: routers can behave differently
Skip this router if no_verify is set
Use this router only for verification if verify_only is set
Fail instead of accept if verifying and fail_verify is set

• The verification conditions for envelope addresses are

verify = sender
 verify = recipient

• Verification defers can be allowed to pass

require verify = sender/defer_ok

Verification “callouts”
• Routers can check only the domains of remote addresses

• Callouts can be used to do more

require verify = sender/callout

• Connects to the routed host and checks with a RCPT command
This is expensive but a cache is used
Callouts can be used with recipients as well as senders
“Random” and postmaster checks can be requested

• Callout defers can be allowed to pass

require verify = recipient/callout=defer_ok

• Callouts can only answer “no” or “maybe”

• Callouts do not stop much spam nowadays
Most spam messages have a valid (forged) sender

35 June 2004

Verifying header syntax
require verify = header_syntax

• Checks those header lines that contain addresses
From: To: Cc: Bcc: Reply-To: Sender:

• Can be used only after DATA or in the non-SMTP ACL

• Catches syntactic junk

To: @
 To: Undisclosed recipients
 To: abc@x.y.z <abc@x.y.z>
 To: <>

• Rejects unqualified addresses by default
Set sender_unqualified_hosts or recipient_unqualified_hosts

Verifying a header sender address
require verify = header_sender[/options]

• Ensures that there is a valid sender in at least one header line
Checks Sender:, Reply-To:, and From:

• Can be restricted to bounce messages only

deny senders = :
 message = Need valid header sender
 !verify = header_sender

• senders checks the envelope sender address
Empty item checks for empty sender (bounce message)

36 June 2004

Requiring encryption
• Can check for specific ciphers

deny message = wrong cipher
 encrypted = DES-CBC3-SHA

• Use * to check for any cipher (i.e. check for any encryption)

• Can check a client’s certificate

accept verify = certificate

Requires tls_verify_hosts or tls_try_verify_hosts to be set

• Insisting on encryption for authentication

auth_advertise_hosts = ${if \
 (main option) eq{$tls_cipher}{}\
 {}{*}}

accept encrypted = * (in ACL for AUTH)

More complex ACL for AUTH
• Suppose you want to allow all authentication mechanisms on
 encrypted connections, but only CRAM-MD5 when the session
 is not encrypted

• Use this ACL to control the AUTH command

acl_check_auth:
 accept encrypted = *
 accept condition = ${if eq \
 {${uc:$smtp_command_argument}}\
 {CRAM-MD5}{yes}{no}}
 deny message = Require CRAM-MD5 or \
 TLS encrypted connection

• $smtp_command_argument is set in non-message ACLs

37 June 2004

The Exiscan patch
• Exiscan is a patch that is maintained by Tom Kistner

• It adds conditions to the DATA ACL
demime sanity checks on MIME structure

also does extension checking
malware detects viruses and other malware using 3rd party

scanners such as Sophos
spam uses results from SpamAssassin
regex does regex matches on a message

• Each condition passes back expansion variables that contain
 useful information

• Get Exiscan from http://duncanthrax.net/exiscan-acl/

Nested ACLs
• Calling a nested ACL

accept verify = recipient
 acl = ${lookup{$local_part}dbm\
 {/etc/per-user/acls}{$value}fail}

• Forced fail in a condition expansion ignores the condition
The above example accepts if the lookup forces failure

• An empty ACL causes the condition to fail
Without fail, the above example denies if the lookup fails

38 June 2004

The local_scan() function
• An installation can supply its own local_scan() function

Written in C and linked into the Exim binary

• Called just before a message is accepted, after all other tests

• Can inspect header lines (in main memory) and body (on disk)

• Can reject the message with a custom error message
Permanent or temporary rejection

• Can accept the message
Add or remove header lines
Modify the recipients list (no recipients means “discard”)
Supply a string for $local_scan_data

Testing policy controls
• The -bh option runs a fake SMTP session

exim -bh 192.203.178.4
 >>> host in host_lookup? yes (matched "*")
 >>> looking up host name for 192.203.178.4
 >>> IP address lookup yielded dul.crynwr.com
 >>> checking addresses for dul.crynwr.com
 >>> 192.203.178.4
 >>> host in host_reject_connection? no
 (option unset)
 ...
 LOG: SMTP connection from dul.crynwr.com
 [192.203.178.4]
 220 your.host.name ESMTP Exim 4.32 Sun,
 10 Apr...
 <enter SMTP commands here>

39 June 2004

Exim is available from
ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/...

.../exim4/exim-4.xx.tar.gz (or .bz2) is the latest release

• GNU General Public Licence
• ASCII documentation included
• PostScript, PDF, Texinfo, and HTML are also available
• FAQ in ASCII and HTML with keyword-in-context index
• See also: http://www.exim.org
• Discussion list: exim-users@exim.org
• Announce list: exim-announce@exim.org
• Indexed archive: http://www.exim-users.org

40 June 2004

