
DNS Session 1: Fundamentals

ccTLD workshop
February 2007

Georgetown, Guyana

Based on Brian Candler's materials
ISOC CCTLD workshop

Computers use IP addresses. Why
do we need names?

● Easier for people to remember
● Computers may be moved between
networks, in which case their IP
address will change

Old solution: hosts.txt

● A centrally-maintained file,
distributed to all hosts on the
Internet

● This feature still exists
– /etc/hosts [Unix]
– c:\windows\system32\drivers\etc\hosts
[Windows]

128.4.13.9 SPARKY
4.98.133.7 UCB-MAILHOST
200.10.194.33 FTPHOST

hosts.txt doesn't scale

✗ Huge file
✗ Needs frequent copying to ALL hosts
✗ Consistency
✗ Always out-of-date
✗ Name uniqueness
✗ Single point of administration

The domain name system was born
(Paul Mockapetris, RFC1034/1035)

● DNS is a Distributed Database for
holding name to IP address (and
other) information

● Distributed:
– Shares the administration
– Shares the load

● Robustness and performance through:
– Replication
– Caching

● A critical piece of Internet
infrastructure

DNS is Hierarchical

● Forms a tree structure

. (root)

gy org

edu.gy isoc.org nsrc.org

uog.edu.gy

DNS is Hierarchical (2)

● Gives globally unique names
● Administered in "zones" (parts of
the tree)

● You can give away ("delegate")
control of part of the tree
underneath you

● Example:
– isoc.org on one set of nameservers
– dnsws.isoc.org on a different set
– foobar.dnsws.isoc.org on another set

Domains vs Zones

Domains vs Zones (2)

Domain Names are (almost)
unlimited

● Max 255 characters total length
● Max 63 characters in each part

– RFC 1034, RFC 1035

● If a domain name is being used as a
host name, you should abide by some
restrictions
– RFC 952 (old!)
– a-z 0-9 and minus (-) only
– No underscores (_)

Using the DNS

● A Domain Name (like
www.tiscali.co.uk) is the KEY to
look up information

● The result is one or more RESOURCE
RECORDS (RRs)

● There are different RRs for
different types of information

● You can ask for the specific type
you want, or ask for "any" RRs
associated with the domain name

Commonly seen RRs

● A (address): map hostname to IP
address

● PTR (pointer): map IP address to name
● MX (mail exchanger): where to deliver
mail for user@domain

● CNAME (canonical name): map
alternative hostname to real hostname

● TXT (text): any descriptive text
● NS (name server), SOA (start of
authority): used for delegation and
management of the DNS itself

Simple example

● Query: www.tiscali.co.uk
● Query type: A
● Result:

● In this case just a single RR is
found, but in general, multiple RRs
may be returned
● IN is the "class" for INTERNET use of the
DNS

www.tiscali.co.uk. IN A 212.74.99.30

Possible results

● Positive
– one or more RRs found

● Negative
– definitely no RRs match the query

● Server fail
– cannot contact anyone who knows the
answer

● NOTE: an answer, Negative or
Positive, is still an answer!
– NXDOMAIN doesn't mean you didn't get an
answer

How do you use an IP address as
the key for a DNS query?

● Convert the IP address to dotted-quad
● Reverse the four parts
● Add ".in-addr.arpa" to the end
(special domain reserved for this
purpose)

● e.g. to find name for 212.74.101.10

● Known as a "reverse DNS lookup"
● because we are looking up the name for an
IP address, rather than the IP address
for a name

10.101.74.212.in-addr.arpa.
 → PTR www.tiscali.co.uk.

Any questions?

?

DNS is a Client-Server application

● (Of course - it runs across a
network)

● Requests and responses are normally
sent in UDP packets, port 53

● Occasionally uses TCP, port 53
– for very large requests, e.g. zone
transfer from master to slave

● TCP/53 must NOT be filtered.

Application
e.g. web browser

There are three roles involved in
DNS

Caching
Nameserver

Authoritative
NameserverResolver

Three roles in DNS
● RESOLVER

– Takes request from application, formats
it into UDP packet, sends to cache

● CACHING NAMESERVER
– Returns the answer if already known
– Otherwise searches for an authoritative
server which has the information

– Caches the result for future queries
– Also known as RECURSIVE nameserver

● AUTHORITATIVE NAMESERVER
– Contains the actual information put
into the DNS by the domain owner

Three roles in DNS

● The SAME protocol is used for
resolver <-> cache and cache <->
authoritative NS communication

● It is possible to configure a single
nameserver as both caching and
authoritative
– But it still performs only one role for
each incoming query

● Common but NOT RECOMMENDED to
configure in this way (see later)

ROLE 1: THE RESOLVER

● A piece of software which formats a
DNS request into a UDP packet, sends
it to a cache, and decodes the
answer

● Usually a shared library (e.g.
libresolv.so under Unix) because so
many applications need it

● EVERY host needs a resolver - e.g.
every Windows workstation has one

How does the resolver find a
caching nameserver?

● It has to be explicitly configured
(statically, or via DHCP etc)

● Must be configured with the IP
ADDRESS of a cache (why not name?)

● Good idea to configure more than one
cache, in case the first one fails

How do you choose which cache(s)
to configure?

● Must have PERMISSION to use it
– e.g. cache at your ISP, or your own

● Prefer a nearby cache
– Minimises round-trip time and packet
loss

– Can reduce traffic on your external
link, since often the cache can answer
without contacting other servers

● Prefer a reliable cache
– Can you run one better than your ISP?

Resolver can be configured with
default domain(s)

● If "foo.bar" fails, then retry query
as "foo.bar.mydomain.com"

● Can save typing but adds confusion
● May generate extra unnecessary
traffic

● Usually best avoided
● Can lead to confusion when migrating
applications or merging
organizations (does www mean
www.companyA or www.companyB ?)

Example: Unix resolver
configuration

● /etc/resolv.conf

● That's all you need to configure a
resolver

Search uog.edu.gy
nameserver 10.0.0.254

Testing DNS

● Just put "www.yahoo.com" in a web
browser?

● Why is this not a good test?

Testing DNS with "dig"

● "dig" is a program which just makes
DNS queries and displays the results
– Better for debugging than "nslookup"
and "host" because it shows the raw
information in full

dig tiscali.co.uk.
 - defaults to query type "A" (Ipv4 address)
dig tiscali.co.uk. mx
 - specified query type MX (Mail eXchange)
dig @10.0.0.254 tiscali.co.uk. mx
 - send to specific cache
 (overrides /etc/resolv.conf)

The trailing dot

● Prevents any default domain being
appended

● Get into the habit of using it
always when testing DNS
– but only on domain names, not IP
addresses or E-mail addresses

dig tiscali.co.uk.

% dig www.uog.edu.gy.

; <<>> DiG 9.3.2 <<>> www.uog.edu.gy
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44030
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 5, ADDITIONAL: 3

;; QUESTION SECTION:
;www.uog.edu.gy. IN A

;; ANSWER SECTION:
www.uog.edu.gy. 85251 IN CNAME ns1.uog.edu.gy.
ns1.uog.edu.gy. 85256 IN A 190.80.29.242

;; AUTHORITY SECTION:
uog.edu.gy. 85256 IN NS gold.sdnp.org.gy.
uog.edu.gy. 85256 IN NS cepheid.guyana.net.gy.
uog.edu.gy. 85256 IN NS ns1.gtt.co.gy.
uog.edu.gy. 85256 IN NS ns1.uog.edu.gy.
uog.edu.gy. 85256 IN NS ns2.gtt.co.gy.

;; ADDITIONAL SECTION:
ns1.gtt.co.gy. 77708 IN A 208.130.114.18
ns2.gtt.co.gy. 77708 IN A 208.130.114.17
cepheid.guyana.net.gy. 85251 IN A 190.80.34.10

;; Query time: 232 msec
;; SERVER: 10.0.0.253#53(10.0.0.253)
;; WHEN: Tue Feb 13 17:53:52 2007
;; MSG SIZE rcvd: 232

Interpreting the results: header

● STATUS
– NOERROR: 0 or more RRs returned
– NXDOMAIN: non-existent domain
– SERVFAIL: cache could not locate answer

● FLAGS
– AA: Authoritative answer (not from
cache)

– You can ignore the others
● QR: Query or Response (1 = Response)
● RD: Recursion Desired
● RA: Recursion Available

● ANSWER: number of RRs in answer

Interpreting the results

● Answer section (RRs requested)
– Each record has a Time To Live (TTL)
– Says how long the cache will keep it

● Authority section
– Which nameservers are authoritative for
this domain

● Additional section
– More RRs (typically IP addrs for
authoritative NS)

● Total query time
● Check which server gave the response!

– If you made a typing error, the query may
go to a default server

Practical Exercise

● dig
● rndc config

DNS Session 2: DNS cache
operation and DNS debugging

Based on Brian Candler's materials
ISOC CCTLD workshop

How caching NS works (1)

● If we've dealt with this query
before recently, answer is already
in the cache - easy!

Resolver
Caching

NS

Query

Response

What if the answer is not in the
cache?

● DNS is a distributed database: parts
of the tree (called "zones") are
held in different servers

● They are called "authoritative" for
their particular part of the tree

● It is the job of a caching
nameserver to locate the right
authoritative nameserver and get
back the result

● It may have to ask other nameservers
first to locate the one it needs

How caching NS works (2)

Resolver
Caching

NS

Query
1

Auth
NS2

Auth
NS

3

Auth
NS

4
Response

5

How does it know which
authoritative nameserver to ask?

● It follows the hierarchical tree
structure

● e.g. to query "www.uog.edu.gy". (root)

gy

edu.gy

uog.edu.gy

1. Ask here

2. Ask here

3. Ask here

4. Ask here

Intermediate nameservers return
"NS" resource records

● "I don't have the answer, but try
these other nameservers instead"

● Called a REFERRAL
● Moves you down the tree by one or
more levels

Eventually this process will either:
● Find an authoritative nameserver which
knows the answer (positive or negative)

● Not find any working nameserver:
SERVFAIL

● End up at a faulty nameserver - either
cannot answer and no further
delegation, or wrong answer!

● Note: the caching nameserver may happen also
to be an authoritative nameserver for a
particular query. In that case it will answer
immediately without asking anywhere else. We
will see later why it's a better idea to have
separate machines for caching and
authoritative nameservers

How does this process start?

● Every caching nameserver is seeded
with a list of root servers

zone "." {
 type hint;
 file "named.root";
}

. 3600000 NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;... etc

/etc/namedb/named.conf (on FreeBSD)

named.root

Where did named.root come from?

● ftp://ftp.internic.net/domain/named.
cache

● Worth checking every 6 months or so
for updates

Demonstration

● dig +trace www.tiscali.co.uk.
● Instead of sending the query to the
cache, "dig +trace" traverses the
tree from the root and displays the
responses it gets
– dig +trace is a bind 9 feature
– useful as a demo but not for debugging

Distributed systems have many
points of failure!

● So each zone has two or more
authoritative nameservers for
resilience

● They are all equivalent and can be
tried in any order

● Trying stops as soon as one gives an
answer

● Also helps share the load
● The root servers are very busy

– There are currently 13 IP addresses
(but many more machines in clusters)

Caching reduces the load on auth
nameservers

● Especially important at the higher
levels: root servers, GTLD servers
(.com, .net ...) and ccTLDs

● All intermediate information is
cached as well as the final answer -
so NS records from REFERRALS are
cached too

Example 1: www.tiscali.co.uk (on
an empty cache)

root
NS server

www.tiscali.co.uk (A)

referral to 'uk' nameservers

.uk
NS server

www.tiscali.co.uk (A)

referral to 'tiscali.co.uk' nameservers

.tiscali.co.uk
NS server

www.tiscali.co.uk (A)

Answer: 212.74.99.30

Example 2: smtp.tiscali.co.uk (after
previous example)

.tiscali.co.uk
NS server

smtp.tiscali.co.uk (A)

Answer: 212.74.114.61

Previous referrals
retained in cache

Caches can be a problem if data
becomes stale

● If caches hold data for too long,
they may give out the wrong answers
if the authoritative data changes

● If caches hold data for too little
time, it means increased work for
the authoritative servers

The owner of an auth server
controls how their data is cached

● Each resource record has a "Time To
Live" (TTL) which says how long it
can be kept in cache

● The SOA record says how long a
negative answer can be cached (i.e.
the non-existence of a resource
record)

● Note: the cache owner has no control
- but they wouldn't want it anyway

A compromise policy

● Set a fairly long TTL - 1 or 2 days
● When you know you are about to make
a change, reduce the TTL down to 10
minutes

● Wait 1 or 2 days BEFORE making the
change

● After the change, put the TTL back
up again

Any questions?

?

What sort of problems might occur
when resolving names in DNS?

● Remember that following referrals is
in general a multi-step process

● Remember the caching

(1) One authoritative server is
down or unreachable

● Not a problem: timeout and try the
next authoritative server
– Remember that there are multiple
authoritative servers for a zone, so
the referral returns multiple NS
records

(2) *ALL* authoritative servers are
down or unreachable!

● This is bad; query cannot complete
● Make sure all nameservers not on the
same subnet (switch/router failure)

● Make sure all nameservers not in the
same building (power failure)

● Make sure all nameservers not even
on the same Internet backbone
(failure of upstream link)

● For more detail read RFC 2182

(3) Referral to a nameserver which
is not authoritative for this zone

● Bad error. Called "Lame Delegation"
● Query cannot proceed - server can
give neither the right answer nor
the right delegation

● Typical error: NS record for a zone
points to a caching nameserver which
has not been set up as authoritative
for that zone

● Or: syntax error in zone file means
that nameserver software ignores it

(4) Inconsistencies between
authoritative servers

● If auth servers don't have the same
information then you will get
different information depending on
which one you picked (random)

● Because of caching, these problems
can be very hard to debug. Problem
is intermittent.

(5) Inconsistencies in delegations

● NS records in the delegation do not
match NS records in the zone file
(we will write zone files later)

● Problem: if the two sets aren't the
same, then which is right?
– Leads to unpredictable behaviour
– Caches could use one set or the other,
or the union of both

(6) Mixing caching and
authoritative nameservers

● Consider when caching nameserver
contains an old zone file, but customer
has transferred their DNS somewhere else

● Caching nameserver responds immediately
with the old information, even though NS
records point at a different ISP's
authoritative nameservers which hold the
right information!

● This is a very strong reason for having
separate machines for authoritative and
caching NS

● Another reason is that an authoritative-only
NS has a mostly constant memory usage

(7) Inappropriate choice of
parameters

● e.g. TTL set either far too short or
far too long

These problems are not the fault of
the caching server!

● They all originate from bad
configuration of the AUTHORITATIVE
name servers

● Many of these mistakes are easy to
make but difficult to debug,
especially because of caching

● Running a caching server is easy;
running authoritative nameservice
properly requires great attention to
detail

How to debug these problems?

● We must bypass caching
● We must try *all* N servers for a
zone (a caching nameserver stops
after one)

● We must bypass recursion to test all
the intermediate referrals

● "dig +norec" is your frienddig +norec @1.2.3.4 foo.bar. a

Server to query Domain Query type

How to interpret responses (1)

● Look for "status: NOERROR"
● "flags ... aa" means this is an
authoritative answer (i.e. not
cached)

● "ANSWER SECTION" gives the answer
● If you get back just NS records:
it's a referral
;; ANSWER SECTION
foo.bar. 3600 IN A 1.2.3.4

Domain name TTL Answer

How to interpret responses (2)

● "status: NXDOMAIN"
– OK, negative (the domain does not
exist). You should get back an SOA

● "status: NOERROR" with zero RRs
– OK, negative (domain exists but no RRs
of the type requested). Should get back
an SOA

● Other status may indicate an error
● Look also for Connection Refused
(DNS server is not running or
doesn't accept queries from your IP
address) or Timeout (no answer)

How to debug a domain using
"dig +norec" (1)

1. Start at any root server: [a-
m].root-servers.net.

2. For a referral, note the NS records
returned

3. Repeat the query for *all* NS
records

4. Go back to step 2, until you have
got the final answers to the query

dig +norec @a.root-servers.net. www.tiscali.co.uk. a

Remember the trailing dots!

How to debug a domain using
"dig +norec" (2)

1.Check all the results from a group
of authoritative nameservers are
consistent with each other

2.Check all the final answers have
"flags: aa"

3.Note that the NS records point to
names, not IP addresses. So now
check every NS record seen maps to
the correct IP address using the
same process!!

How to debug a domain using
"dig +norec" (3)

● Tedious, requires patience and
accuracy, but it pays off

● Learn this first before playing with
more automated tools
– Such as:

● http://www.zonecheck.fr/ - most thorough
● http://www.squish.net/dnscheck/
● http://dnsecheck.se/

– These tools all have limitations, none
is perfect

Practical

Debugging domain with dig

checking domain with

http://www.zonecheck.fr/
http://www.squish.net/dnscheck/
http://dnsecheck.se/

DNS Session 3: Configuration of
Authoritative Nameservice

Based on Brian Candler's materials
ISOC CCTLD workshop

Recap

● DNS is a distributed database
● Resolver asks Cache for information
● Cache traverses the DNS delegation
tree to find Authoritative
nameserver which has the information
requested

● Bad configuration of authoritative
servers can result in broken domains

DNS Replication

● For every domain, we need more than
one authoritative nameserver with
the same information (RFC 2182)

● Data is entered in one server
(Master) and replicated to the
others (Slave(s))

● Outside world cannot tell the
difference between master and slave
– NS records are returned in random order
for equal load sharing

● Used to be called "primary" and
"secondary"

Slaves connect to Master to
retrieve copy of zone data

● The master does not "push" data to
the slaves

Master

Slave

Slave

When does replication take place?

● Slaves poll the master periodically
- called the "Refresh Interval" - to
check for new data
– Originally this was the only mechanism

● With new software, master can also
notify the slaves when the data
changes
– Results in quicker updates

● The notification is unreliable (e.g.
network might lose a packet) so we
still need checks at the Refresh
Interval

Serial Numbers

● Every zone file has a Serial Number
● Slave will only copy data when this
number INCREASES
– Periodic UDP query to check Serial
Number

– If increased, TCP transfer of zone data

● It is your responsibility to
increase the serial number after
every change, otherwise slaves and
master will be inconsistent

Recommended serial number
format: YYYYMMDDNN

● YYYY = year
● MM = month (01-12)
● DD = day (01-31)
● NN = number of changes today (00-99)

– e.g. if you change the file on 14th
February 2007, the serial number will
be 2007021400. If you change it again
on the same day, it will be 2007021401.

Serial Numbers: Danger 1

● If you ever decrease the serial
number, the slaves will never update
again until the serial number goes
above its previous value

● RFC 1912 section 3.1 explains a
method to fix this problem

● At worst, you can contact all your
slaves and get them to delete their
copy of the zone data

Serial Numbers: Danger 2

● Serial no. is a 32-bit unsigned
number

● Range: 0 to 4,294,967,295
● Any value larger than this is
silently truncated

● e.g. 20040305000 (note extra digit)
= 4AA7EC968 (hex)
= AA7EC968 (32 bits)
= 2860435816

● If you make this mistake, then later
correct it, the serial number will
have decreased

Configuration of Master

● /etc/namedb/named.conf points to
zone file (manually created)
containing your RRs

● Choose a logical place to keep them
– e.g. /etc/namedb/master/uog.edu.gy
– or /etc/namedb/master/gy.edu.uog

zone "example.com" {
 type master;
 file "master/example.com";
 allow-transfer { 137.39.1.3;
 196.2.1.10; };
};

Configuration of Slave

● named.conf points to IP address of
master and location where zone file
should be created

● Zone files are transferred
automatically

● Don't touch them!zone "example.com" {
 type slave;
 masters { 208.130.114.18; };
 file "slave/example.com";
 allow-transfer { none; };
};

Master and Slave

● It's perfectly OK for one server to
be Master for some zones and Slave
for others

● That's why we recommend keeping the
files in different directories
– /etc/namedb/master/
– /etc/namedb/slave/

● (also, the slave directory can have
appropriate permissions so that the
daemon can create files)

allow-transfer { ... }

● Remote machines can request a
transfer of the entire zone contents

● By default, this is permitted to
anyone

● Better to restrict this
● You can set a global default, and
override this for each zone if
required

options {
 allow-transfer { 127.0.0.1; };
};

Structure of a zone file

● Global options
– $TTL 1d
– Sets the default TTL for all other
records

● SOA RR
– "Start Of Authority"
– Housekeeping information for the zone

● NS RRs
– List all the nameservers for the zone,
master and slaves

● Other RRs
– The actual data you wish to publish

Format of a Resource Record

● One per line (except SOA can extend over
several lines)

● If you omit the Domain Name, it is the
same as the previous line

● TTL shortcuts: e.g. 60s, 30m, 4h, 1w2d
● If you omit the TTL, uses the $TTL
default value

● If you omit the Class, it defaults to IN
● Type and Data cannot be omitted
● Comments start with SEMICOLON (;)

www 3600 IN A 212.74.112.80
Domain TTL Class Type Data

Shortcuts

● If the Domain Name does not end in a
dot, the zone's own domain
("origin") is appended

● A Domain Name of "@" means the
origin itself

● e.g. in zone file for example.com:
– @ means example.com.
– www means www.example.com.

If you write this...

... it becomes this

$TTL 1d
@ SOA (...)
 NS ns0
 NS ns0.as9105.net.
; Main webserver
www A 212.74.112.80
 MX 10 mail

example.com. 86400 IN SOA (...)
example.com. 86400 IN NS ns0.example.com.
example.com. 86400 IN NS ns0.as9105.net.
www.example.com. 86400 IN A 212.74.112.80
www.example.com. 86400 IN MX 10 mail.example.com.

Format of the SOA record

$TTL 1d

@ 1h IN SOA ns1.example.net. hostmaster.nsrc.org.
(
 2007021400 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

 IN NS ns1.example.net.
 IN NS ns2.example.net.
 IN NS ns1.othernetwork.com.

Format of the SOA record

● ns1.example.net.
– hostname of master nameserver

● hostmaster.nsrc.org.
– E-mail address of responsible person,
with "@" changed to dot, and trailing
dot. Prefer a role account.

● Serial number
● Refresh interval

– How often Slave checks serial number on
Master

● Retry interval
– How often Slave checks serial number if
the Master did not respond

Format of the SOA record (cont)

● Expiry time
– If the slave is unable to contact the
master for this period of time, it will
delete its copy of the zone data

● Negative / Minimum
– Old software used this as a minimum
value of the TTL

– Now it is used for negative caching:
indicates how long a cache may store
the non-existence of a RR

● RIPE-203 has recommended values
– http://www.ripe.net/ripe/docs/dns-
soa.html

Format of NS records
● List all authoritative nameservers
for the zone - master and slave(s)

● Must point to HOSTNAME not IP
address

$TTL 1d

@ 1h IN SOA ns1.example.net. hostmaster.nsrc.org. (
 2007021400 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

 IN NS ns1.example.net.
 IN NS ns2.example.net.
 IN NS ns1.othernetwork.com.

Format of other RRs

● IN A 1.2.3.4
● IN MX 10 mailhost.example.com.

– The number is a "preference value".
Mail is delivered to the lowest-number
MX first

– Must point to HOSTNAME not IP address

● IN CNAME host.example.com.
● IN PTR host.example.com.
● IN TXT "any text you like"

When you have added or changed
a zone file:

● Remember to increase the serial
number!

● named-checkzone example.com \
 /etc/namedb/master/example.com
– bind 9 feature
– reports zone file syntax errors;
correct them!

● named-checkconf
– reports errors in named.conf

● rndc reload
– or: rndc reload example.com

● tail /var/log/messages

These checks are ESSENTIAL

● If you have an error in named.conf
or a zone file, named may continue
to run but will not be authoritative
for the bad zone(s)

● You will be lame for the zone
without realising it

● Slaves will not be able to contact
the master

● Eventually (e.g. 4 weeks later) the
slaves will expire the zone

● Your domain will stop working

Other checks you can do

● dig +norec @x.x.x.x example.com. soa
– Check the AA flag
– Repeat for the master and all the
slaves

– Check the serial numbers match

● dig @x.x.x.x example.com. axfr
– "Authority Transfer"
– Requests a full copy of the zone
contents over TCP, as slaves do to
master

– This will only work from IP addresses
listed in the allow-transfer {...}
section

So now you have working
authoritative nameservers!

● But none of this will work until you
have delegation from the domain
above

● That is, they put in NS records for
your domain, pointing at your
nameservers

● You have also put NS records within
the zone file

● The two sets should match

Any questions?

?

TOP TEN ERRORS in authoritative
nameservers

● All operators of auth nameservers
should read RFC 1912
– Common DNS Operational and
Configuration Errors

● And also RFC 2182
– Selection and Operation of Secondary
DNS servers

1. Serial number errors

● Forgot to increment serial number
● Incremented serial number, then
decremented it

● Used serial number greater than 232

● Impact:
– Slaves do not update
– Master and slaves have inconsistent
data

– Caches will sometimes get the new data
and sometimes old - intermittent
problem

2. Comments in zone files starting
'#' instead of ';'

● Syntax error in zone file
● Master is no longer authoritative
for the zone

● Slaves cannot check SOA
● Slaves eventually expire the zone,
and your domain stops working
entirely

● Use "named-checkzone"
● Use "tail /var/log/messages"

3. Other syntax errors in zone files

● e.g. omitting the preference value
from MX records

● Same impact

4. Missing the trailing dot

; zone example.com.
@ IN MX 10 mailhost.example.com

becomes

@ IN MX 10 mailhost.example.com.example.com.

; zone 2.0.192.in-addr.arpa.
1 IN PTR host.example.com

becomes

1 IN PTR host.example.com.2.0.192.in-addr.arpa.

5. NS or MX records pointing to IP
addresses

● They must point to hostnames, not IP
addresses

● Unfortunately, a few mail servers do
accept IP addresses in MX records,
so you may not see a problem with
all remote sites

6. Slave cannot transfer zone from
master

● Access restricted by allow-transfer
{...} and slave not listed

● Or IP filters not configured
correctly

● Slave will be lame (non-
authoritative)

7. Lame delegation

● You cannot just list any nameserver
in NS records for your domain

● You must get agreement from the
nameserver operator, and they must
configure it as a slave for your
zone

● At best: slower DNS resolution and
lack of resilience

● At worst: intermittent failures to
resolve your domain

8. No delegation at all

● You can configure "example.com" on
your nameservers but the outside
world will not send requests to them
until you have delegation

● The problem is hidden if your
nameserver is acting both as your
cache and as authoritative
nameserver

● Your own clients can resolve
www.example.com, but the rest of the
world cannot

9. Out-of-date glue records

● See later

10. Not managing TTL correctly
during changes

● e.g. if you have a 24 hour TTL, and
you change www.example.com to point
to a new server, then there will be
an extended period when some users
hit one machine and some hit the
other

● Follow the procedure:
– Reduce TTL to 10 minutes
– Wait at least 24 hours
– Make the change
– Put the TTL back to 24 hours

Practical

● Create a new domain
● Set up master and slave nameservice
● Obtain delegation from the domain
above

● Test it

DNS Session 4: Delegation

Based on Brian Candler's materials
ISOC CCTLD workshop

How do you delegate a
subdomain?

● In principle straightforward: just
insert NS records for the subdomain,
pointing at someone else's servers

● If you are being careful, you should
first check that those servers are
authoritative for the subdomain
– by using "dig +norec" on all the
servers

● If the subdomain is managed badly,
it reflects badly on you!
– and you don't want to be fielding
problem reports when the problem is
somewhere else

Zone file for "example.com"

$TTL 1d
@ 1h IN SOA ns1.example.net. hostmaster.nsrc.org. (
 2007021400 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

 IN NS ns1.example.net.
 IN NS ns2.example.net.
 IN NS ns1.othernetwork.com.

; My own zone data
 IN MX 10 mailhost.example.net.
www IN A 212.74.112.80

; A delegated subdomain
subdom IN NS ns1.othernet.net.
 IN NS ns2.othernet.net.

There is one problem here:

● NS records point to names, not IPs
● What if zone "example.com" is
delegated to "ns.example.com"?

● Someone who is in the process of
resolving (say) www.example.com
first has to resolve ns.example.com

● But in order to resolve
ns.example.com they must first
resolve ns.example.com !!
– Chicken and egg problem...

In this case you need "glue"

● A "glue record" is an A record for
the nameserver, held higher in the
tree

● Example: consider the .com
nameservers, and a delegation for
example.com; this is the com. zone

example NS ns.example.com.
 NS ns.othernet.net.

ns.example.com. A 192.0.2.1 ; GLUE RECORD

Don't put in glue records except
where necessary

● In the previous example,
"ns.othernet.net" is not a subdomain
of "example.com". Therefore no glue
is needed.

● Out-of-date glue records are a big
source of problems
– e.g. after renumbering a nameserver

– Results in intermittent problems,
difficult to debug

Example where a glue record IS
needed

; My own zone data
 IN MX 10 mailhost.example.net.
www IN A 212.74.112.80

; A delegated subdomain
subdom IN NS ns1.subdom ; needs glue
 IN NS ns2.othernet.net. ; doesn't
ns1.subdom IN A 192.0.2.4

Checking for glue records

● dig +norec ... and repeat several
times

● Look for A records in the
"Additional" section whose TTL does
not count down

$ dig +norec @a.gtld-servers.net. www.as9105.net. a
 ...
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 1
;; QUERY SECTION:
;; www.as9105.net, type = A, class = IN

;; AUTHORITY SECTION:
as9105.net. 172800 IN NS ns0.as9105.com.
as9105.net. 172800 IN NS ns0.tiscali.co.uk.

;; ADDITIONAL SECTION:
ns0.as9105.com. 172800 IN A 212.139.129.130

Practical

● Delegating a subdomain

Further reading

● "DNS and BIND" (O'Reilly)
● BIND 9 Administrator Reference
Manual
– /usr/share/doc/bind9/arm/Bv9ARM.html

● http://www.isc.org/sw/bind/
– includes FAQ, security alerts

● RFC 1912, RFC 2182
– http://www.rfc-editor.org/

