DNSSEC an introduction

ccTLD workshop November 26-29th, 2007 Amman, Jordan

Based on slides from RIPE NCC

Overview

- DNS Vulnerabilities
- DNSSEC Mechanisms
 - New Resource Records
 - Setting Up a Secure Zone
 - Delegating Signing Authority
 - Key Rollovers
- Operational Concerns

DNS Vulnerabilities

DNS Resolving

DNS Data Flow

DNS Vulnerabilities

DNS Exploit Example

- Mail goes to the server in the MX resource record
- Path only visible in email headers

Other Possible DNS Targets

- SPF, DomainKey and family
 - Technologies that use the DNS to mitigate spam and phishing: \$\$\$ value for the black hats
- StockTickers, RSS feeds
 - Usually no source authentication but supplying false stock information through a stockticker and a news feed can have \$\$\$ value
- ENUM
 - Mapping telephone numbers to services in the DNS
 - As soon as there is some incentive

Mitigate by Deploying SSL?

Mitigate by Deploying SSL?

- Claim: SSL is not the magic bullet
 - (Neither is DNSSEC)
- Problem: Users are offered a choice
 - Far too often
 - Users are annoyed
- Implementation and use make SSL vulnerable
 - Not the technology

Where Does DNSSEC Come In?

- DNSSEC secures the name to address mapping
 - Before the certificates are needed

- DNSSEC provides an "independent" trust path
 - The person administering "https" is most probably a different from person from the one that does "DNSSEC"
 - The chains of trust are most probably different

DNSSEC Provides

- Data Origin Authentication
- Data Integrity
- Authenticating Name and Type Non-Existence

DNSSEC

- Is not designed to provide confidentiality
- Provides no protection against denial of service attacks

DNSSEC Components

- TSIG/SIG(0): provides mechanisms to authenticate communication between machines
- DNSKEY/RRSIG/NSEC: provides mechanisms to establish authenticity and integrity of data
- DS: provides a mechanism to delegate trust to public keys of third parties

A secure DNS will be used as an

Summary

- DNS introduction
- DNS vulnerabilities
- SSL not the complete answer

Questions?

DNSSEC Mechanisms

- New Resource Records
- Setting Up a Secure Zone
- Delegating Signing Authority
- Key Rollovers

DNSSEC Protected Vulnerabilities

DNSSEC hypersummary

- Data authenticity and integrity by signing the Resource Records Sets with private key
- Public DNSKEYs used to verify the RRSIGs
- Children sign their zones with their private key
 - Authenticity of that key established by signature/checksum by the parent (DS)

DNSSEC summary

ripe.net.

```
www.ripe.net IN 900 A 193.0.0.214
www.ripe.net IN 900 RRSIG A ... 26523 ripe.net. ...

ripe.net IN 3600 DNSKEY 256 3 5 ...
ripe.net IN 3600 RRSIG DNSKEY ... 26523 ripe.net. ...
```

net.

```
        ripe.net
        IN 3600 DS 26523 5 1 ...

        ripe.net
        IN 3600 RRSIG DS .... 573 net. ...
```

Locally Configured Verifier (named.conf)

```
trusted-keys { "ripe.net." 256 3 5 "..."; };
```

Security Status of Data (RFC4035)

Secure

 Resolver is able to build a chain of signed DNSKEY and DS RRs from a trusted security anchor to the RRset

Insecure

 Resolver knows that it has no chain of signed DNSKEY and DS RRs from any trusted starting point to the RRset

Bogus

- Resolver believes that it ought to be able to establish a chain of trust but for which it is unable to do so
- May indicate an attack but may also indicate a configuration error or some form of data corruption

Indeterminate

Resolver is not able to determine whether the RRset should be signed

New Resource Records

RRs and RRSets

Resource Record:

```
- name TTL class type rdata www.ripe.net. 7200 IN A 192.168.10.3
```

RRset: RRs with same name, class and type:

```
www.ripe.net. 7200 IN A 192.168.10.3
A 10.0.0.3
A 172.25.215.2
```

RRSets are signed, not the individual RRs

New Resource Records

- Three Public key crypto related RRs
 - RRSIG
 Signature over RRset made using private key
 - DNSKEY Public key, needed for verifying a RRSIG
 - DS Delegation Signer; 'Pointer' for building chains of authentication

- One RR for internal consistency
 - NSEC Indicates which name is the next one in the
 zone and which typecodes are available for the current name
 - authenticated non-existence of data

NSEC Records

- NSEC RR provides proof of non-existence
- If the servers response is NXDOMAIN:
 - One or more NSEC RRs indicate that the name or a wildcard expansion does not exist
- If the servers response is NOERROR:
 - And empty answer section
 - The NSEC proves that the QTYPE did not exist
- More than one NSEC may be required in response
 - Wildcards
- NSEC records are generated by tools
 - Tools also order the zone

NSEC Walk

- NSEC records allow for zone enumeration
- Providing privacy was not a requirement
- Zone enumeration is a deployment barrier

- Work has started to study solutions
 - Requirements are gathered
 - If and when a solution is developed, it will coexist with DNSSEC-BIS!

Summary

- DNSSEC not a PKI
- Zone status
- New RRs: DNSKEY, RRSIG, NSEC, DS

Questions?

Setting Up a secure Zone

- Generate keypair
 - Include public key (DNSKEY) in zone file
 - dnssec-keygen tool comes with BIND

Sign your zone

- Signing will:
 - Sort the zone
 - Insert:
 - NSEC records
 - RRSIG records (signature over each RRset)
 - DS records (optional)
 - Generate key-set and ds-set files

Publish signed zone

- Signed zone is regular zonefile format
 - With extra resource records

 Make sure all your servers are DNSSEC capable!

Configure forwarding resolver

Test

 DNSSEC verification only done in resolver!

- Distribute your public key (DNSKEY)
 - To parent zone (key-set or ds-set can be used)
 - To everyone that wants/needs you as SEP

 Make sure to inform everyone of key rollovers!

Summary

- Generating keys
- Signing and publishing the zone
- Resolver configuration
- Testing the secure zone

Questions?

Delegating Signing Authority

Chains of Trust

Using the DNS to Distribute Keys

 Secured islands make key distribution problematic

- Distributing keys through DNS:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children

Only the root key needed in ideal world

Key Problem

- Interaction with parent administratively expensive
 - Should only be done when needed
 - Bigger keys are better

- Signing zones should be fast
 - Memory restrictions
 - Space and time concerns
 - Smaller keys with short lifetimes are better

Key Functions

- Large keys are more secure
 - Can be used longer
 - − Large signatures => large zonefiles
 - Signing and verifying computationally expensive
- Small keys are fast
 - Small signatures
 - Signing and verifying less expensive <a>IIII
 - Short lifetime III To the short lifetime

Key solution: More Than One Key

- RRsets are signed, not RRs
- DS points to specific key
 - Signature from that key over DNSKEY RRset transfers trust to all keys in DNSKEY RRset
- Key that DS points to only signs DNSKEY RRset
 - Key Signing Key (KSK)
- Other keys in DNSKEY RRset sign entire zone
 - Zone Signing Key (ZSK)

Walking the Chain of Trust

Locally Configured

```
Trusted Key . 8907
                                                                                      (root).
                DNSKEY (...) 5TQ3s... (8907); KSK
                DNSKEY (...) lasE5... (2983) ; ZSK
                RRSIG DNSKEY (...) 8907 . 69Hw9...
                     7834 3 1ab15...
net.
                DS
                         DS (...) . 2983
                RRSIG
                                                                                         net.
                DNSKEY (...) q3dEw... (7834); KSK
net.
                DNSKEY (...) 5TQ3s... (5612) ; ZSK
                RRSIG DNSKEY (...) 7834 net. cMas...
ripe.net.
                DS
                      4252 3 1ab15...
                RRSIG DS (...) net. 5612
```

ripe.net.

```
ripe.net.
               DNSKEY (...) rwx002... (4252) ; KSK
               DNSKEY (...) sovP42... (1111) ; ZSK
               RRSIG DNSKEY (...) 4252 ripe.net. 5t...
www.ripe.net.
               A 193.0.0.202
               RRSIG A (...) 1111 ripe.net. a3...
```

Summary

- Scaling problem: secure islands
- Zone signing key, key signing key
- Chain of trust

Questions?

Key Rollovers

Key Rollovers

- Try to minimise impact
 - Short validity of signatures
 - Regular key rollover
- Remember: DNSKEYs do not have timestamps
 - the RRSIG over the DNSKEY has the timestamp
- Key rollover involves second party or parties:
 - State to be maintained during rollover
 - Operationally expensive

Key Rollover - Summary

- 1. Generate new KSK
- 2. Sign with old and new KSKs
- 3. Wait for your servers + TTL of old DNSKEY RRset
- 4. Inform resolvers of the new key
 - that have you as a trusted entry point
- Query for the parental DS and remember the TTL
- Upload the new KSK or DS to the parent
- Check if *all* parental servers have new DS
- Wait another TTL before removing the old key

Summary

- Key size and signature lifetimes
- Key rollovers
- Emergency procedure

Questions?

Operational Concerns

Trace k.root against modified named 9.3.1 Bandwidth Increase ZSK size unsigned 0512 2048 bandwidth (KB/s) Upper Bound time (seconds)

Operational Issues

- Increased memory, CPU & bandwidth usage
- Who signs the root zone?
 - IANA/ICANN
 - Department of Commerce
 - Verisign
- No system call for DNSSEC
- Local verifier on trusted network?
- End user choice?

Summary

- Increased memory and bandwidth demands
- "Political" issues

Questions?

The End!

