
LinuxChixAfrica

Introduction to Unix

Why use UNIX?
 Scalability and reliability

� has been around for many years
� works well under heavy load

 Flexibility
� emphasises small, interchangeable components

 Manageability
� remote logins rather than GUI
� scripting

 Security
� Windows has a long and sad security history
� Unix and its applications are not blameless though

Windows DOESNOTSCALE

 OK for 100 mailboxes
 But don't try to run 10,000 mailboxes with
standard Microsoft solutions

 Remote administration is painful
� It's still a desktop OS
� Lots of administrative overhead

 Spend your entire life installing patches?
 Not as stable
 Commercial pricing but lousy support
 Closed source commercial software is not
necessarily a bad thing

Simplified Unix family tree

4.4BSD
AT&T

System V

Solaris

Linux

BSDI

NetBSD
FreeBSD
OpenBSD

Red Hat (rpm)
__

debian (apt)
gentoo (portage)
others...

mandrake
SuSE
yellowdog etc

_

_
_
_

$$

$

Why didwe choose FreeBSD?

 It's Free!
 Optimised for performance on i386 hardware

� NetBSD aims to run on many platforms
� OpenBSD aims to provide enhanced security

 Well proven in real-world environments
 Excellent packaging system
 Industrial strength TCP/IP stack

Why not Linux?
 Lack of centralized documentation
 Lack of tools for performance analysis (gstat)
 Too many distributions to choose from

� Ubuntu, Gentoo (Debian – not bad)
� SCO, Turbolinux, Mandriva, SuSE, etc.

 Red Hat used to be the de-facto choice for a
reliable, free distribution
� Now it has gone commercial (RHES)
� Mandriva
� Fedora is "bleeding edge" and has short lifecycle

 Package management is a problem
� rpm, source, apt is better

Why not Linux cont.

 BSD includes the kernel and the userland
utilities in a single source tree

 BSD tends to be more "conservative" (except
for debian)
� emphasises stability and compatibility
� compare: ipfw, ipfwadm, ipchains, iptables...

 Excellent TCP/IP stack
� Ask Microsoft, they used it for Windows 2000

 FreeBSD packaging system allows for
flexibility
� Packages (pkg) tend to be more conservative
� Ports are more generally more current

Is free software really any good?!

 The people who write it also use it
 Source code is visible to all

� The quality of their work reflects on the author
personally

� Others can spot errors and make improvements
 What about support?

� documentation can be good, or not so good
� mailing lists; search the archives first
� if you show you've invested time in trying to solve
a problem, others will likely help you

� http://www.catb.org/~esr/faqs/smart-
questions.html

Is free software really any good?

 Core Internet services run on free software
� BIND Domain Name Server
� Apache web server (secure SSL as well)
� Sendmail, Postfix, Exim for SMTP/POP/IMAP
� MySQL and PostgreSQL databases
� PHP, PERL, C languages

 Several very high profile end-user projects
� Firefox, original Netscape browser
� OpenOffice
� Thunderbird

First topics:

 Unix birds-eye overview
 Partitioning
 FreeBSD installation

Key components of the Unix OS

 Kernel
 Shell
 User processes
 System processes

 Inter-process
communication

 Security model
 Filesystem layout

Kernel
 The "core" of the operating system
 Device drivers

� communicate with your hardware
� block devices, character devices, network
devices, pseudo devices

 Filesystems
� organise block devices into files and directories

 Memory management
 Timeslicing (multiprocessing)
 Networking stacks - esp. TCP/IP
 Enforces security model

Shell

 Command line interface for executing
programs
� DOS/Windows equivalent: command.com or
command.exe

 Choice of similar but slightly different shells
� sh: the "Bourne Shell". Standardised in POSIX
� csh: the "C Shell". Not standard but includes
command history

� bash: the "Bourne-Again Shell". Combines POSIX
standard with command history. But distributed
under GPL (more restrictive than BSD licence)

User processes

 The programs that you choose to run
 Frequently-used programs tend to have short
cryptic names
� "ls" = list files
� "cp" = copy file
� "rm" = remove (delete) file

 Lots of stuff included in the base system
� editors, compilers, system admin tools

 Lots more stuff available to install too
� packages / ports

System processes

 Programs that run in the background; also
known as "daemons"

 Examples:
� cron: executes programs at certain times of day
� syslogd: takes log messages and writes them to
files

� inetd: accepts incoming TCP/IP connections and
starts programs for each one

� sshd: accepts incoming logins
� sendmail (other MTA daemon): accepts incoming
mail

Inter-process communication

 Pipes: easy to use!
� grep hostname /etc/* | less

 Other, more specialised mechanisms
� fifos (named pipes)
� sockets
� System V IPC and shared memory

I.E. through the filesystem or over the network

Securitymodel

 Numeric IDs
� user id (uid 0 = "root", the superuser)
� group id
� supplementary groups

 Mapped to names
� /etc/passwd, /etc/group (plain text files)
� /etc/pwd.db (fast indexed database)

 Suitable security rules enforced
� e.g. you cannot kill a process running as a
different user, unless you are "root"

Filesystem security

 Each file and directory has three sets of
permissions
� For the file's uid (user)
� For the file's gid (group)
� For everyone else (other)

 Each set of permissions has three bits: rwx
� File: r=read, w=write, x=execute
� Directory: r=list directory contents,
w=create/delete files within this directory, x=enter
directory

 Example: brian wheel rwxr-x---

Key differences toWindows

 Unix commands and filenames are CASE-
SENSITIVE

 Path separator: / for Unix, \ for Windows
 Windows exposes a separate filesystem tree
for each device
� A:\foo.txt, C:\bar.txt, E:\baz.txt
� device letters may change, and limited to 26

 Unix has a single 'virtual filesystem' tree
� /bar.txt, /mnt/floppy/foo.txt, /cdrom/baz.txt
� administrator choses where each FS is attached

Standard filesystem layout

/bin essential binaries
/boot kernel and modules
/dev device access nodes
/etc configuration data

/etc/defaults configuration defaults
/etc/rc.d startup scripts

/home/username user's data storage
/lib essential libraries
/sbin essential sysadmin tools
/stand recovery tools
/tmp temporary files
/usr progs/applications
/var data files (logs, E-mail

messages, status files)

Standard filesystem layout (cont)

/usr
/usr/bin binaries
/usr/lib libraries
/usr/libexec daemons
/usr/sbin sysadmin binaries
/usr/share documents
/usr/src source code
/usr/local/... 3rd party applications
/usr/X11R6/... graphical applications

/var
/var/log log files
/var/mail mailboxes
/var/run process status
/var/spool queue data files
/var/tmp temporary files

Why like this?

 It's good practice to keep /usr and /var in
separate filesystems in separate partitions
� So if /var fills up, the rest of the system is
unaffected

� So if /usr or /var is corrupted, you can still boot up
the system and repair it

 That's why we have a small number of
essential tools in /bin, /sbin; the rest go in
/usr/bin and /usr/sbin

 Third-party packages are separate again
� /usr/local/bin, /usr/local/sbin, /usr/local/etc ...

Anote about devices

 e.g. /dev/ad0 = the first ad (ATAPI/IDE disk)
 In FreeBSD, entries for each device under /
dev are created dynamically
� e.g. when you plug in a new USB device

 Some "devices" don't correspond to any
hardware (pseudo-devices)
� e.g. /dev/null is the "bit bucket"; send your data
here for it to be thrown away

Any questions?

?

Some reminders about PC
architecture

 When your computer turns on, it starts a
bootup sequence in the BIOS

 The BIOS locates a suitable boot source (e.g.
floppy, harddrive, CD-ROM, network)

 Disks are devided into 512-byte blocks
 The very first block is the MBR (Master Boot
Record)

 The BIOS loads and runs the code in the
MBR, which continues the bootup sequence

Partitioning

 The MBR contains a table allowing the disk to
be divided into (up to) four partitions

 Beyond that, you can nominate one partition
as an "extended partition" and then further
subdivide it into "logical partitions"

 FreeBSD has its own partitioning system,
because Unix predates the PC

 FreeBSD recognises MBR partitions, but calls
them "slices" to avoid ambiguity

FreeBSD partitions

 Partitions (usually) sit within a slice
 Partitions called a,b,c,d,e,f,g,h
 CANNOT use 'c'

� for historical reasons, partition 'c' refers to the
entire slice

 By convention, 'a' is root partition and 'b' is
swap partition

 'swap' is optional, but used to extend capacity
of your system RAM

Simple partitioning: /dev/ad0
MBR Single slice /dev/ad0s1

ad0s1a ad0s1b ad0s1d ad0s1e ad0s1f

/ swap /var /tmp /usr

/ (root partition) ad0s1a 256MB
swap partition ad0s1b ~ 2 x RAM

/var ad0s1d 256MB (+)
/tmp ad0s1e 256MB
/usr ad0s1f rest of disk

‘Auto’ partition does this:

 Small root partition
� this will contain everything not in another partition
� /boot for kernel, /bin, /sbin etc.

 A swap partition for virtual memory
 Small /tmp partition

� so users creating temporary files can't fill up your
root partition

 Small /var partition
 Rest of disk is /usr

� Home directories are /usr/home/<username>

Issues

 /var may not be big enough
 /usr contains the OS, 3rd party software, and
your own important data
� If you reinstall from scratch and erase /usr, you
will lose your own data

 So you might want to split into /usr and /u
� Suggest 4-6GB for /usr, remainder for /u

 Some people prefer a ramdisk for /tmpd
/etc/fstab: 64MB ramdisk

md /tmp mfs -s131072,rw,nosuid,nodev,noatime 0 0

Core directory refresher

 / (/boot, /bin, /sbin, /etc, maybe /tmp)
 /var (Log files, spool, maybe user mail)
 /usr (Installed software and home dirs)
 Swap (Virtual memory)
 /tmp (May reside under “/”)

Don't confuse the the “root account” (/root) with
the “root” partition.d

Note...

 Slicing/partition is just a logical division
 If your hard drive dies, most likely everything
will be lost

 If you want data security, then you need to set
up mirroring with a separate drive
� Another reason to keep your data on a separate
partition, e.g. /u

� Remember, “rm -rf” on a mirror works very well.

Summary: block devices

 IDE (ATAPI) disk drives
� /dev/ad0
� /dev/ad1 ...etc

 SCSI or SCSI-like disks (e.g. USB flash)
� /dev/da0
� /dev/da1 ...etc

 IDE (ATAPI) CD-ROM
� /dev/acd0 ...etc

 Traditional floppy drive
� /dev/fd0

 etc.

Summary

 Slices
� /dev/ad0s1
� /dev/ad0s2
� /dev/ad0s3
� /dev/ad0s4

 Defined in MBR
 What PC heads call
"partitions"

 BSD Partitions
� /dev/ad0s1a
� /dev/ad0s1b
� /dev/ad0s1d ...etc
� /dev/ad0s2a
� /dev/ad0s2b
� /dev/ad0s2d ...etc

 Conventions:
� 'a' is /
� 'b' is swap
� 'c' cannot be used

Any questions?

?

Installing FreeBSD

 Surprisingly straightforward
 Boot from CD or floppies, runs "sysinstall"
 Slice your disk

� Can delete existing slice(s)
� Create a FreeBSD slice

 Partition
 Choose which parts of FreeBSD distribution
you want, or "all"

 Install from choice of media
� CD-ROM, FTP, even a huge pile of floppies!

Findingmore information

 Our reference handout
� a roadmap!

 man pages
� esp. when you know the name of the command

 www.freebsd.org
� handbook, searchable website / mail archives

 "The Complete FreeBSD" (O'Reilly)
 comp.unix.shell FAQ

� http://www.faqs.org/faqs/
by-newsgroup/comp/comp.unix.shell.html

 STFW (Search The Friendly Web)

