
B u ild in g p ro g ra m s

LinuxChix-KE

W h a t h a p p e n s in y o u r C P U ?

● It executes a small set of instructions called
"machine code"

● Each instruction is just a pattern of bits
● Fast for computer to run

– Modern processors run at gigahertz clock
speeds: billions of instruction cycles per second

● Machine code is hard to read and write!

L e t's lo o k a t s o m e !

● A machine code program is informally known as
"a binary"

● Example: our familiar /bin/ls
less /bin/ls
hexdump -C /bin/ls | less

● It's mostly binary code. There may be some text
strings which the author included

strings /bin/ls | less
● We can extract some more info:

file /bin/ls
ldd /bin/ls

H o w a re b in a rie s c re a te d ?

● You can write them by hand, using assembly
language
– Done where speed is critical, e.g. some parts of

kernel, some games
– Called "low level" programming
– Problem: different types of CPU have different

machine codes; rewrite same program many
times

● Or, you can write in a "high level" language, and
then convert this to machine code

● The process is called "compiling"

P o in ts to n o te

● You have to compile the program before you can
run it

● Different systems have their own compilers
– with care, you can write "portable" software

which can be compiled on many different
systems

● Compilers are programs themselves
● The machine-code generated by a compiler may

not be as efficient as the code written by a good
human

H ig h le v e l la n g u a g e s

● 'C' has a close relationship with Unix
– Unix itself is written in C
– With some work, Unix can be recompiled

("ported") for different processors
– Not a very high level: you are still dealing

closely with the Unix interface
– Quite efficient machine code can be generated

● Many other languages exist
– Higher-level languages can make the

programmer's life easier but may run less
efficiently

– Different compiler for each one

E x e rc is e 1 : y o u r f irs t 'C ' p ro g ra m

● Write a small program in C
● Compile it using the GNU C Compiler (gcc)
● Run it!
● Look at the binary

S o u rc e c o d e

● The high-level version you write is called source
code

● "Open source" (also called “free software”)
– The author gives you the source code
– Allows you to compile the software on different

platforms
– Allows you to see how it works and to make

modifications
● "Closed source"

– You are provided with binaries only
– Very hard to read, very hard to change

A u to m a te d b u ild in g

● A large application has many source files, and
many commands are needed to build and link the
individual parts

● When you change one source file, it might not be
necessary to recompile everything
– would be a waste of time

● So program writers tend to automate building
using 'make'

F o rm a t o f a M a k e f ile

● Contains rules which say:
– What file you are building (the "target")
– What sources it comes from
– The command needed to build it

● These rules are in a file called 'Makefile'
● When you run 'make', it works out which files to

rebuild by looking at modification times
– If any source file has a timestamp later than the

target, the target needs to be rebuilt

E x e rc is e 2 : y o u r f irs t M a k e f ile

● C rea te a Makefil e for your
appl ica tion

● C hange the source, use ' make' to
rebuild it

● R un the b inary to test

P o in t to n o te . . .

● There are different versions of 'make'
● BSD make and GNU make are different; Linux

tends to come with GNU make
● But if you need it, you can install GNU make on

your system (package "gmake")

M a k in g p o rta b le a p p lic a tio n s

● There have been many different flavours of Unix
released over time

● Programs need subtle changes to compile on
different platforms
– e.g. a particular feature may be available on one

system but not another, or may work differently
● Often means changes to the Makefile for different

targets
● Programmers can write a different Makefile for

each OS... but it's a lot of work!

A s o lu tio n - a u to c o n f ig u ra tio n

● run a shell script before you compile, which tests
the system features available and writes out a
suitable Makefile

● Most popular example: GNU autoconf
– program author uses 'autoconf' to write the

script
– the script is called 'configure' and is distributed

with the program
– it takes template files and writes out the final

versions (e.g. 'Makefile.in' is rewritten as
'Makefile')

S o a ty p ic a l b u ild o p e ra tio n is :

./configure
make
make install (as root)

a u to c o n f a ls o le ts y o u s e t c o m p ile -
tim e o p tio n s

● e.g. software might normally install in '/usr/local'
but you can force it elsewhere

./configure --prefix=/opt
● You may also be able to disable or enable certain

features in the final application
● Author usually documents the options in an

INSTALL or README file

a u to c o n f is n o t p e rfe c t

● It's a shell script
– not all shells work identically
– relies on programs in /bin and /sbin (which may

vary between OSes)
● It's hard to write your own autoconf script

– we won't attempt this
– this is not a programming course anyway

● But generally it works well
– a lot of work has gone into making autoconf

work on a wide range of popular platforms

W h e re c a n y o u f in d o p e n - s o u rc e
s o f tw a re to in s ta ll?

● http://freshmeat.net/ is a good index
● Use the web, use mailing lists
● There are advantages of downloading, compiling

and building it yourself
– You can get the very latest versions
– You have full control over how it is built

● Main disadvantage is it can be difficult to uninstall
– Might have to locate all the files which were

installed, and remove them by hand

T h e F re e B S D p o rts c o lle c tio n

● Thousands of programs already catalogued
● Fully automates the process of downloading the

source, unpacking, configuring, building,
installing

● Applies any necessary patches to work under
FreeBSD

● Tends to configure them consistently
– /etc/rc.conf and /usr/local/etc/rc.d/*

● Records the installed files, so you can remove
them using pkg_delete

D is a d v a n ta g e s o f p o rts ?

● It's BSD-specific
● Software version in the ports system is not always

the latest
● When upgrading one port, you may end up

updating others it depends on

F re e B S D p a c k a g e s

● These are actually just ports which have been
compiled by someone else

● Easy to install: pkg_add
● No compilation time required

– Esp. for huge programs: KDE, OpenOffice etc
● However, you don't have any control over

compilation options
● Dependency issues

– package foo-x.x.x requires package bar-y.y.y

F re e B S D its e lf is o p e n s o u rc e

● You can install (if you want) the source code
– /usr/src/sys is the kernel
– /usr/src/bin is the source for /bin programs
– /usr/src/usr.bin is the source for /usr/bin

programs
– ... etc

● You can rebuild individual parts, or the whole
operating system
– choose drivers, optimise for your CPU type, ...

● Convenient if only one small component needs to
be modified and rebuilt
– e.g. a security advisory

R e b u ild in g /b in /ls

cd /usr/src/bin/ls
make
make install

R e b u ild in g th e k e rn e l

● Can remove unnecessary device drivers to save
RAM
– the GENERIC kernel contains lots of them
– all drivers are built as loadable modules anyway

● Can add or remove features: e.g. firewalling, IPv6,
IPSEC

● Can optimise kernel for your particular CPU
– GENERIC kernel runs on 486 upwards

E x e rc is e 3

● Configure a new kernel
● Build and install it

