Building program s

LinuxChix-KE

What happens in your C PU?

It executes a small set of instructions called
"machine code"
e Each instruction is just a pattern of bits
e Fast for computer to run
— Modern processors run at gigahertz clock
speeds: billions of instruction cycles per second
 Machine code 1s hard to read and write!

Let's look at som e!

* A machine code program 1s informally known as
"a binary"
 Example: our familiar /bin/ls
less /bin/ls
hexdump -C /bin/ls | less
e It's mostly binary code. There may be some text
strings which the author included
strings /bin/ls | less

e We can extract some more info:
file /bin/ls
1dd /bin/Is

How are binaries created?

* You can write them by hand, using assembly
language
— Done where speed 1s critical, e.g. some parts of
kernel, some games
— Called "low level" programming
— Problem: different types of CPU have different
machine codes; rewrite same program many
times
* Or, you can write in a "high level" language, and
then convert this to machine code
e The process 1s called "compiling"

Points to nole

* You have to compile the program before you can
run it
e Different systems have their own compilers
— with care, you can write "portable" software
which can be compiled on many different
systems
e Compilers are programs themselves
* The machine-code generated by a compiler may
not be as efficient as the code written by a good
human

High level languages

* 'C' has a close relationship with Unix
— Unix 1tself 1s written in C
— With some work, Unix can be recompiled
("ported") for different processors
— Not a very high level: you are still dealing
closely with the Unix interface
— Quite efficient machine code can be generated
 Many other languages exist
— Higher-level languages can make the
programmer's life easier but may run less
efficiently
— Different compiler for each one

Exercise I: your first 'C "program

e Write a small program in C

e Compile 1t using the GNU C Compiler (gcc)
 Run 1t!

e Look at the binary

Source code

e The high-level version you write 1s called source
code
e "Open source" (also called “free software™)
— The author gives you the source code
— Allows you to compile the software on different
platforms
— Allows you to see how 1t works and to make
modifications
e "Closed source"
— You are provided with binaries only
— Very hard to read, very hard to change

Automated building

e A large application has many source files, and
many commands are needed to build and link the
individual parts

 When you change one source file, it might not be
necessary to recompile everything

— would be a waste of time

e So program writers tend to automate building

using 'make'

FormatofaMakefile

e Contains rules which say:
— What file you are building (the "target")
— What sources it comes from
— The command needed to build 1t
* These rules are 1n a file called 'Makefile'
 When you run 'make’, it works out which files to
rebuild by looking at modification times
— If any source file has a timestamp later than the
target, the target needs to be rebuilt

Exercise 2: your first M akefile

. Cvodde 4« Makefile for Nour
ﬁppl(dx’ﬂ'om

- Chidrpe the souree, woe 'Imike’ 1o
rebuld (1

- Rt the by fo feot

Point to note...

e There are different versions of 'make'
« BSD make and GNU make are different; Linux

tends to come with GNU make
e But if you need it, you can install GNU make on

your system (package "gmake")

M aking portable applications

e There have been many different flavours of Unix
released over time
* Programs need subtle changes to compile on
different platforms
— ¢.g. a particular feature may be available on one
system but not another, or may work differently
» Often means changes to the Makefile for different
targets
e Programmers can write a different Makefile for
each OS... but 1it's a lot of work!

A solution - auto configuration

 run a shell script before you compile, which tests
the system features available and writes out a
suitable Makefile
* Most popular example: GNU autoconf
— program author uses 'autoconf’ to write the
script
— the script 1s called 'configure' and is distributed
with the program
— 1t takes template files and writes out the final

versions (e.g. 'Makefile.in' 1s rewritten as
'Makefile')

So atypicalbuild operation is:

/configure
make
make 1nstall (as root)

autoconf also lets you set compile-
time options

e ¢.g. software might normally install 1n '/usr/local’
but you can force 1t elsewhere
./configure --prefix=/opt
* You may also be able to disable or enable certain
features 1n the final application

* Author usually documents the options in an
INSTALL or README file

autoconfis notperfecl

e It's a shell script
— not all shells work 1dentically
— relies on programs in /bin and /sbin (which may
vary between OSes)
e It's hard to write your own autoconf script
- we won't attempt this
— this 1s not a programming course anyway
* But generally it works well
— a lot of work has gone 1nto making autoconf
work on a wide range of popular platforms

Where ¢can you find open-source
software to install?

 http://freshmeat.net/ 1s a good index
e Use the web, use mailing lists
e There are advantages of downloading, compiling
and building 1t yourself
— You can get the very latest versions
— You have full control over how it 1s built
 Main disadvantage 1s 1t can be difficult to uninstall
— Might have to locate all the files which were
installed, and remove them by hand

The FreeBSD ports colleclion

e Thousands of programs already catalogued

e Fully automates the process of downloading the
source, unpacking, configuring, building,
installing

* Applies any necessary patches to work under
FreeBSD

* Tends to configure them consistently

— /etc/rc.conf and /usr/local/etc/rc.d/*

* Records the installed files, so you can remove

them using pkg delete

Disadvantages of ports?

e It's BSD-specific

» Software version in the ports system 1s not always
the latest

 When upgrading one port, you may end up
updating others 1t depends on

FreeBbSD packages

e These are actually just ports which have been
compiled by someone else
e Easy to install: pkg add
e No compilation time required
— Esp. for huge programs: KDE, OpenOffice etc
 However, you don't have any control over
compilation options
* Dependency 1ssues
- package foo-x.x.x requires package bar-y.y.y

FreeBSD itselfis open source

* You can install (1f you want) the source code

— /usr/src/sys 1s the kernel

— /usr/src/bin 1s the source for /bin programs

— /usr/src/usr.bin 1s the source for /usr/bin

programs

— ... etc

* You can rebuild individual parts, or the whole
operating system

— choose drivers, optimise for your CPU type, ...
e Convenient if only one small component needs to
be modified and rebuilt

Rebuilding /bin [ls

cd /usr/src/bin/ls
make
make 1nstall

Rebuilding the kernel

e Can remove unnecessary device drivers to save
RAM

— the GENERIC kernel contains lots of them
— all drivers are built as loadable modules anyway
e Can add or remove features: e.g. firewalling, IPv6,
IPSEC

e Can optimise kernel for your particular CPU
— GENERIC kernel runs on 486 upwards

Exercise 3

e Configure a new kernel
e Build and install 1t

