
A T o u r o f U N IX

. . . l ooking a b it closer under the
hood

P ro c e s s e s

● A running instance of a program is
ca l l ed a " process"

● I dentified b y a numeric process id
(pid)
– P id is unique while process is
running; wil l b e re-used some time
a fter it terminates

● H as its own priva te memory space
– not accessib le b y other processes; not
even other instances of the same
program

W h a t d o e s U N IX g iv e a p ro c e s s ?

● A ta b le of environment varia b les
– just a bunch of n a m e =v a lu e settings
– kept in memory (process gets own
priva te copy)

● A ta b le of open fil es
– 0: standard input
– 1 : standard output
– 2: standard error

● A set of argument strings
– e. g. what you put a f te r the command
name

● T H A T ' S A L L ! !

T h e s h e ll: a s im p le in te rfa c e

● T he shel l l ets you start processes
– and wa its for them to finish, unless
you run them in the " b ackground"

● T he shel l l ets you set environment
varia b l es

● T he shel l l ets you set up fil e
descriptors
– N orma l ly stdin is connected to your
keyb oard and stdout/ stderr to your
screen, but you can override

● T he shel l l ets you pass arguments
● T he shel l itsel f is a process

S h e ll e x p a n s io n

● T he shel l performs processing on
your command l ine b e fo re starting
the program

● S pl its l ine into words (cmd, arg1 ,
arg2, . . .)

● S earches for cmd in P A T H if
required

● P erforms various types of argument
expansion
– S ee exercise

T h e s h e ll its e lf ru n s a s a p ro c e s s

● A shel l can start another shel l
● A shel l has its own environment

– e. g. it uses the P A T H setting to
loca te programs

– it copies the environment to its children
● A shel l has stdin/ stdout/ stderr

– Y ou can run a non-interactive shel l ,
i. e. a script

– E xamples include periodic system
tidying

● log rota tion
● rebuilding of the loca te da ta b ase
● rebuilding of the man page index

H o w a re n e w p ro c e s s e s s ta rte d ?
● T he current processes “clones” itsel f
via the fork() ca l l

● T he fork' ed copy is ca l l ed the child
– it shares a ll the characteristics of the
parent, including memory, open fil es,
etc. . .

● T he child replaces itsel f b y ca l l ing
the new program to b e run via
exec()
 |
 fork()
 / \
 parent child
 |
 exec()

O n c e a p ro c e s s h a s s ta rte d . . .

● I t can make " system ca l ls" to the
K ernel as needed, e. g. to
– read and write da ta
– open and close fil es
– start new child processes (k n o w n a s "fo rk ")

. . . e tc
● U sing its pid, you can send it a
" signa l " , e. g.
– R equest to termina te
– R equest to suspend (stop temporarily)
or restart

– C erta in system events a lso send
signa ls

● When it ends, returns ' exit code'
(0-1 27)
– to parent (the process which started
it)

● F or a " foreground" process
– C trl-C = terminate
– C trl-Z = suspend * *

● S how a l l processes
– ps auxw

● S end a signa l to any process
– kil l -sig pid[]

● More advanced job control
– job s = l ist a l l job s (children) started
b y this shel l

– fg n = resume in foreground * *%
– b g n = resume in b ackground%

P ro c e s s c o n tro l f ro m th e s h e ll

S u m m a ry

● P rocesses identified b y pid
● E ach process a t start gets 3
things:
– E nvironment varia b les, e. g.
H O ME = " / home/ you"

– O pen fil es
– A rguments

● Y ou can send signa ls to a running
process

● A t end it returns a numeric exit
code

● S hel l gives you control of these
things

P ra c tic a l E x e rc is e 1

P ro c e s s e s a n d s e c u rity

● E ach process runs with set
privil eges
– effective uid
– effective gid
– supplementary groups

● S ome opera tions are only ava il a b l e
to root
– e. g. b ind socket to port b elow 1 024
– e. g. shut down system

● A process running as root (euid= 0)
can change to any other uid - but
not b ack aga in

● O ther processes cannot change uid
a t a l l !

H o w d o u s e rs c h a n g e p a s s w o rd s ?

● N ote tha t / etc/ master. passwd is
only readab le and writa b le b y root

● T he ' passwd' program has specia l
privil eges, it is marked " setuid
root"

● Whenever a user starts the
' passwd' program, kernel gives it
euid= root
– I t can then change the user' s
password

● setuid programs must b e written
very careful ly to avoid security
holes

● D on' t fiddle with setuid b its

A s id e . . .

● I t' s rea l ly useful to think of
commands in pa irs
– T he command which s h o w s a setting
and the command which c h a n g e s tha t
setting

● E xample:
– p w d shows the current working
directory

– c d changes the current working
directory

● F ol low the 3-step system for
changes
– C heck things are how you think they
are

– Make the change
– C heck things have changed as you
expected

C o m m a n d s fo r m a n a g in g f ile s

● S how which fil es exist: ls
● S how deta il (long form) : ls -l
● Manipula ting fil es: cp, mv, rm
● Which editor to use?

– vi
● clunky but a lways ava ila b l e

– ee
● F reeBS D -specific

– joe
● has to b e insta l l ed as a separa te package

T h e V irtu a l F ile s y s te m (V F S)

● A l l fil esystems appear in a single
tree

● Must have a root device - /
● C an a ttach other devices a t other
points

● A t b ootup, everything in / etc/ fsta b
is mounted
– except l ines marked ' noauto'

K e y V F S c o m m a n d s

● S how sta tus
– mount
– df

● A ttach device
– mount -t cd9660 / dev/ acd0 / cdrom

● / cdrom is ca l led the " mount point"
● it' s just an empty sub directory
● a fter mounting, the fil esystem contents
appear here

● D etach device
– umount / cdrom

O th e r d e v ic e s

● F ormatting a floppy disk
– fdformat / dev/ fd0
– newfs msdos -L myfloppy / dev/ fd0_

● Mounting a floppy disk
– mount -t msdos / dev/ fd0 / mnt

● U S B pen
– mount -t msdos / dev/ da0s1 / mnt

● typica l example
● look in / var/ log/ messages to check device
● use ' fdisk / dev/ da0' to look a t sl ices

●

F ile s y s te m s a fe ty

● D O N ' T remove any media until it
has b een unmounted
– O therwise, fil esystem can b e corrupted

● K ernel won' t l et you unmount a
fil esystem if it is in use
– U se ' fsta t' to find processes using it

● A LWA Y S shut down properly
● F il esystem repa ir tool is ca l l ed
" fsck"

U s e ro o t s p a rin g ly

U nless you must, do not use the
root user for day-to-day activities.
I t is easier to b reak things tha t
way. O nly use root, if you must.

A T o u r o f U N IX

. . . l ooking a b it closer under the
hood

P ro c e s s e s

● A running instance of a program is
ca l l ed a " process"

● I dentified b y a numeric process id
(pid)
– P id is unique while process is
running; wil l b e re-used some time
a fter it termina tes

● H as its own priva te memory space
– not accessib le b y other processes; not
even other instances of the same
program

W h a t d o e s U N IX g iv e a p ro c e s s ?

● A ta b l e of environment varia b les
– just a bunch of n a m e =v a lu e settings
– kept in memory (process gets own
priva te copy)

● A ta b l e of open fil es
– 0: standard input
– 1 : standard output
– 2: standard error

● A set of argument strings
– e. g. what you put a f te r the command
name

● T H A T ' S A L L ! !

T h e s h e ll: a s im p le in te rfa c e

● T he shel l lets you start processes
– and wa its for them to finish, unless
you run them in the " b ackground"

● T he shel l lets you set environment
varia b l es

● T he shel l lets you set up fil e
descriptors
– N orma l ly stdin is connected to your
keyb oard and stdout/ stderr to your
screen, but you can override

● T he shel l lets you pass arguments
● T he shel l itsel f is a process

S h e ll e x p a n s io n

● T he shel l performs processing on
your command l ine b e fo re starting
the program

● S pl its l ine into words (cmd, arg1 ,
arg2, . . .)

● S earches for cmd in P A T H if
required

● P erforms various types of argument
expansion
– S ee exercise

T h e s h e ll its e lf ru n s a s a p ro c e s s

● A shel l can start another shel l
● A shel l has its own environment

– e. g. it uses the P A T H setting to
loca te programs

– it copies the environment to its children
● A shel l has stdin/ stdout/ stderr

– Y ou can run a non-interactive shel l ,
i. e. a script

– E xamples include periodic system
tidying

● log rota tion
● rebuilding of the loca te da ta b ase
● rebuilding of the man page index

H o w a re n e w p ro c e s s e s s ta rte d ?
● T he current processes “clones” itself
via the fork() ca l l

● T he fork' ed copy is ca l l ed the child
– it shares a ll the characteristics of the
parent, including memory, open fil es,
etc. . .

● T he child replaces itself b y ca l l ing
the new program to b e run via
exec()
 |
 fork()
 / \
 parent child
 |
 exec()

O n c e a p ro c e s s h a s s ta rte d . . .

● I t can make " system ca l ls" to the
K ernel as needed, e. g. to
– read and write data
– open and close files
– start new child processes (k n o w n a s "fo rk ")

. . . e tc
● U sing its pid, you can send it a
" signa l " , e. g.
– R equest to terminate
– R equest to suspend (stop temporarily)
or restart

– C erta in system events a lso send
signa ls

● When it ends, returns ' exit code'
(0-1 27)
– to parent (the process which started
it)

● F or a " foreground" process
– C trl-C = terminate
– C trl-Z = suspend * *

● S how a l l processes
– ps auxw

● S end a signa l to any process
– kil l -sig pid[]

● More advanced job control
– job s = l ist a l l job s (children) started
b y this shel l

– fg n = resume in foreground * *%
– b g n = resume in b ackground%

P ro c e s s c o n tro l f ro m th e s h e ll

S u m m a ry

● P rocesses identified b y pid
● E ach process a t start gets 3
things:
– E nvironment varia b les, e. g.
H O ME = " / home/ you"

– O pen fil es
– A rguments

● Y ou can send signa ls to a running
process

● A t end it returns a numeric exit
code

● S hel l gives you control of these
things

P ra c tic a l E x e rc is e 1

P ro c e s s e s a n d s e c u rity

● E ach process runs with set
privileges
– effective uid
– effective gid
– supplementary groups

● S ome opera tions are only ava il a b le
to root
– e. g. b ind socket to port b elow 1 024
– e. g. shut down system

● A process running as root (euid= 0)
can change to any other uid - but
not b ack aga in

● O ther processes cannot change uid
a t a l l !

H o w d o u s e rs c h a n g e p a s s w o rd s ?

● N ote tha t / etc/ master. passwd is
only reada b le and writa b l e b y root

● T he ' passwd' program has specia l
privileges, it is marked " setuid
root"

● Whenever a user starts the
' passwd' program, kernel gives it
euid= root
– I t can then change the user' s
password

● setuid programs must b e written
very careful ly to avoid security
holes

● D on' t fiddle with setuid b its

A s id e . . .

● I t' s rea l ly useful to think of
commands in pa irs
– T he command which s h o w s a setting
and the command which c h a n g e s tha t
setting

● E xample:
– p w d shows the current working
directory

– c d changes the current working
directory

● F ol low the 3-step system for
changes
– C heck things are how you think they
are

– Make the change
– C heck things have changed as you
expected

C o m m a n d s f o r m a n a g in g f ile s

● S how which fil es exist: ls
● S how deta il (long form) : ls -l
● Manipula ting fil es: cp, mv, rm
● Which editor to use?

– vi
● clunky but a lways ava il a b l e

– ee
● F reeBS D -specific

– joe
● has to b e insta l l ed as a separa te package

T h e V irtu a l F ile s y s te m (V F S)

● A l l fil esystems appear in a single
tree

● Must have a root device - /
● C an a ttach other devices a t other
points

● A t b ootup, everything in / etc/ fsta b
is mounted
– except l ines marked ' noauto'

K e y V F S c o m m a n d s

● S how sta tus
– mount
– df

● A ttach device
– mount -t cd9660 / dev/ acd0 / cdrom

● / cdrom is ca l l ed the " mount point"
● it' s just an empty sub directory
● a fter mounting, the fil esystem contents
appear here

● D etach device
– umount / cdrom

O th e r d e v ic e s

● F ormatting a floppy disk
– fdformat / dev/ fd0
– newfs msdos -L myfloppy / dev/ fd0_

● Mounting a floppy disk
– mount -t msdos / dev/ fd0 / mnt

● U S B pen
– mount -t msdos / dev/ da0s1 / mnt

● typica l example
● look in / var/ log/ messages to check device
● use ' fdisk / dev/ da0' to look a t sl ices

●

F ile s y s te m s a fe ty

● D O N ' T remove any media until it
has b een unmounted
– O therwise, fil esystem can b e corrupted

● K ernel won' t l et you unmount a
fil esystem if it is in use
– U se ' fsta t' to find processes using it

● A LWA Y S shut down properly
● F il esystem repa ir tool is ca l l ed
" fsck"

U s e ro o t s p a rin g ly

U nless you must, do not use the
root user for day-to-day activities.
I t is easier to b reak things tha t
way. O nly use root, if you must.

