CVS - concurrent versions
system

SANOG 10
Network Management
Workshop
Aug 29 - Sep 2 2007/
New Delhi, India




Overview — what is CVS ?

CVS 1s a Version Control System (VCS)




Contents

 Part |

— version control and change managements
- introduction to CVS - principles, commands
- examples

- setting up a repository

— accessing the repository

— Importing a project

- creating modules




Contents — cont'd

* Part Il
- the CVSROOQOT/ directory and its files
— pre- and post- jobs
- the big picture: mail notifications, cvsweb, and
lists
— putting it all together
- automated scenarios




Overview — what is version
control

* Version control, and change management

- Keep track of changes (revisions)

- Share changes with others (public repository)

- Maintain multiple versions of a same set of data
(branches)

 What kind of data ?

- Source code

- Documentation

- Configuration files

- Binary data as well (less efficient)




CVS terminology

* repository
- Central, master copy containing all files being
versioned. Directory structured

* working copy
- Local copy of a project, checked out from a
repository. Contains special directories (CVS)
with information about which files are under CVS
control, where they files come from and where

they should be committed.

* module
— A set of directories, files or other modules under a

common “shortcut” name m



CVS principles

* CVS uses a centralized “master copy”: the
repository

* All work is done in a working copy

* Changes are committed back to the repository

» Special directory, CVS

cvs update (up)

3 _
REPOSITORY — WORKING COPY
cvs commit




CVS - the repository

* CVS is a centralized VCS (1 repository)
* The repository contains files in the RCS
format, all endingin' ,v'

» Each RCS file contains a complete history,
with changelog, of the file being versioned

* Well adapted to text files
* The repository is NEVER edited by hand
* A number of tools exist to analyze or browse

the repository
- cvsweb/webcvs

SONOG



CVS - the repository

» Clients can access the repository locally or
over the network.

* The repository is indicated (UNIX) using the
CVSROOT environment variable:

« CVSROOT=
- /cvs/myprojects # local disk
- :pserver:myserver.com:/cvs/myprojects # via pserver
- :ext:user@myserver.com:/cvs/myprojects # via SSH

* Allows for distributed work over LAN/WAN
SONOG



CVS - example workflow

e |nitial checkout

— CVS CO projectname initial checkout

- vi filename ... Work ...

- cvs commit [filename] record changes

» Later:

- CVS up update working copy
from repository

- Vi filename ... work ...

- cvs commit [filename] record changes

SONOG



CVS - example workflow —

cont'd
cvs checkout (co)
‘ (before work starts) ‘
C:: cvs update (up)
-
REPOSITORY - WORKING COPY
— cvs commil
cvs import -Il : make install
(initial) ] cp
Y
PRE-CVS PRODUCTION




CVS clients

» Exist for most operating systems
- cvs command line (UNIX, Win32)
- TortoiseCVS — embeds in Explorer (Win32)
- WIinCVS (Win32)

. Ac.é.ess the repository over the network or
locally




CVS commands — action
commands

import
— Import a new project into an existing repository

checkout (co)
— check out a working copy of a project/file/module
from the repository

update (up)
— update a working copy from the CVS version

commit
- commit changes back to the repository (incl. new

ilze) SONDOG



CVS commands — action

commands
cont'd
e add
- add a new file in the working copy, ready to
commit

» delete (del)

- remove a file from the working copy, ready to
commit




CVS command - status
commands

» status
- see the status and version of a given file or by
default all files

o diff
- show the difference between a given revision (by
default: the last one) of the named file and the file
In the working repository

* log

— show revision history for one or more files

SONOG



A working example

% CVSROOT=: ext : server. nane:/data/cvs
% export CVSROOT

% cvs co soneproj ect

Passwor d; ***xx**

cvs server: Updating soneproject
Udir/filel

Udir/file2

%ls -1 dir/

-rwxr-xr-x 2 regnauld staff 512 Dec
-rwr--r-- 1 regnauld staff 1244 Nov
-rwr--r-- 1 regnauld staff 341 Dec
%vi filel

% cvs commt filel

20 15: 44
17 14: 21
3 21: 04

CVS/
filel
file2




A working example — cont'd

...................... editor ........ .. .. .. ... ... ...
/[ Bugfix -- Modified filel to fix bug /
\ \
I OV e e /
\ CVS: Enter Log. Lines beginning wth CVS:' are \
/| CVS. renoved automatically /
\ CVS: \
/| CVS. Modified Files: /
\ CVS: filel \
N OV S e e I /
L \

[tnp/ cvsUABnYm 8 |ines, 290 characters
Checking in filel,

[data/cvs/dir/filel,v <-- filel

new revision: 1.2; previous revision: 1.1
done

%




What's in the CVS/ directory ?

 Entries
— existing files, and newly added files

* Root
- where is the repository located

* Repository
- name of module or path in the repository




The CVS $Id$ directive

* |In an existing file, we add the following line

$1d$

* Now cvs commit the file, and look at the file
again




Setting up a new repository

* Anyone can create a repository, anywhere
« Done usingthecvs 1 nit command

* Example:
- nkdi r /datal/cvsrepo
- export CVSROOT=/dat a/ cvsrepo
-cvs [-d /data/cvsrepo] init
-Is -1 /datal/cvsrepo

drwxrwxr-x 3 pr staff 1024 Dec 20 15: 45 CVSROOT/




Accessing the new repository

* Locally

- cvs -d /data/cvsrepo ...
* Not necessary to specify -d if CVSROOT is defined

* Remotely
- cvs -d .ext:servername:/data/cvsrepo ...
- SSH must be available!

* Ready for import!




Importing a new project...

% CVSROOT=/ dat a/ cvs; export CVSROOT
% cd sonepl ace/ nyproj ect/
% cvs i1 nport ny/new project before cvs start

..................... editor ........ .. ... . . . . . ...
/[ I nmport pre-CVS version of nmy new project /
\ \
N OV S i e I /
\ CVS. Enter Log. Lines beginning wwth CVS:' are \
/| CVS. renoved automatically /
e \

N ny/ new project/filel
N ny/ new project/file2

No conflicts created by this inport

%




Importing a new project...cont'd

* The location for this project in the repository
IS now my/new/project, under the /data/cvs
repository i.e.:

- /data/cvs/my/new/project
» Let's test that we can check out the project:

% cvs co new proj ect

U ny/ new project/filel
U ny/ new project/file2
% cd ny/ new proj ect
%ls -1




Modules

* my/new/project is maybe too long as a project
name
 solution: modules, which are shorter names
for directories or groups of directories and
other modules.
* For example:
pr o] ect nmy/ new pr oj ect
* With such a module defined, it will be possible
to checkout, commit, etc... using the simple
name “project”
cvs -d :ext:/data/cvs co project
* We'll see how to define modules later.

SONOG



The CVSROOT/ directory

* A default module is always created when one
inits a repository: CVSROOT

% cvs co CVSROOT
CVSROOT/ checkout | I st
CVSROOT/ comm tinfo
CVSROOT/ confi g
CVSROOT/ cvswr apper s
CVSROOT/ editi nfo
CVSROOT/ | ogi nf o
CVSROOT/ nodul es
CVSROOT/ not i fy
CVSROOT/ rcsi nfo
CVSROOT/ t agi nf o
CVSROOT/ veri fynsg

CcCCCCCCcCccCccCcccc




The CVSROOT/ directory —
cont'd

* Files described in cvs(9)
- man S5 cvs

 Most relevant:

- modules define modules
- commitinfo pre-commit scripts
— cvswrappers handle special files

- loginfo post-commit scripts




Pre- and post- jobs

» Using commitinfo and loginfo, it is possible to
have automatic jobs run before and after each
commit, for instance:

* pre-commit stage (commitinfo)
- verify that a user is allowed to modify a given file
- check syntax for a file
» post-commit stage (loginfo)
- send update as a mall
- append it to a log




The big picture: mail, cvsweb,
lists




Putting it all together...




CVS shortcomings

symlinks and ownership of files are not
recorded
no renaming of files (copy + delete)

no changesets

- each file has 1 version, need postprocessing work
to
figure out “all files for this commit”

no disconnected operation

- add, remove, commit, ... all need access to the
server

branching/merging is quite complicated




Automated scenarios

 |dea: automatize configuration management
tasks so that configuration files are
automatically versioned using CVS...

* ... even when the sysadmin forgets :)

* Implementation — cron job
- look at all files in a given directory
- if they exist in the repository already -> commit
- if they don't, add, then commit

SONOG



Automated scenarios — cont'd

* Already exists for network equipment:

RANCID
- http://www.shrubbery.net/rancid/

« Simple concept to implement for all relevant
files in /etc

» Subscribe all admins to the alias / mailing list,

SO everyone receives a notification when a
change takes place — whether planned or not!

SONOG



References

 http://www.nongnu.org/cvs/

 http://cvsbook.red-bean.com/

* http://www.tortoisecvs.org/




