
Refresher: Cryptographic
Terms and Concepts

Advanced ccTLD Workshop

September 2008
Amsterdam, Netherlands

Hervey Allen

NSRC@ccTLD Advanced
Amsterdam

What's our Goal with all this?

(1)-- Confidentiality

(2)-- Integrity

(3)-- Authentication
 - Access Control

- Verification

- Repudiation

(4)-- Availability

NSRC@ccTLD Advanced
Amsterdam

1976 Was an Important Year
DES: Adopted as an encryption standard by the

US government. It was an open standard. The
NSA calls it “One of their biggest mistakes.”

But, more importantly for us...

public-key cryptography: Whitfield Diffie and
Martin Hellman describe public/private key
cryptographic techniques using trap-door one-
way mathematical functions. Radical
transformation of the cryptographic paradigm.

NSRC@ccTLD Advanced
Amsterdam

Review
This is the warm-up for tomorrow and

DNSSEC...

You can read RFC 3833, “Threat Analysis of
the Domain Name System”:

● http://tools.ietf.org/html/rfc3833

DNSSEC helps us to solve several issues:
– Packet interception
– ID Guessing and Query Prediction
– Name Chaining (“Cache Poisoning”)
– Betrayal by Trusted Server

NSRC@ccTLD Advanced
Amsterdam

Terminology
● hashes/message digests

- md5/sha1
- collisions

● entropy (randomness)

● keys
- symmetric
- asymmetric (public/private)
- length
- distribution
- creation

● Digital signatures

● ciphers
- block
- stream

● plaintext/ciphertext

● password/passphrase

All these lead to...
● SSL/TLS

- Digital Certificates
+ CSRs
+ CRTs
+ PEM files
+ CAs

● SSH

● PGP

● Secure email with:
- secure SMTP

+ SSL
+ StartTLS

- POPS, IMAPS

● DNSSEC

NSRC@ccTLD Advanced
Amsterdam

Ciphers ==> ciphertext

We start with plaintext. Something you can
read.

We apply a mathematical algorithm to the
plaintext.

The algorithm is the cipher.

The plaintext is turned in to ciphertext.

Almost all ciphers were secret until recently.

Creating a secure cipher is HARD.

NSRC@ccTLD Advanced
Amsterdam

Keys

To create ciphertext and turn it back to
plaintext we apply a key to the cipher.

The security of the ciphertext rests with the
key. This is a critical point. If someone gets
your key, your data is compromised.

This type of key is called a private key.

This type of cipher system is efficient for large
amounts of data.

This is a symmetric cipher.

NSRC@ccTLD Advanced
Amsterdam

Symmetric Cipher

 Private Key/Symmetric Ciphers

clear
text

clear
text

cipher text

K K
The same key is used to encrypt the document before

sending and to decrypt it once it is received

NSRC@ccTLD Advanced
Amsterdam

Examples of Symmetric
Ciphers

DES - 56 bit key length, designed by US
security service

3DES - effective key length 112 bits

AES (Advanced Encryption Standard) - 128 to
256 bit key length

Blowfish - 128 bits, optimized for fast
operation on 32-bit microprocessors

IDEA - 128 bits, patented (requires a license for
commercial use)

NSRC@ccTLD Advanced
Amsterdam

Features of Symmetric
Ciphers

● Fast to encrypt and decrypt, suitable for large
volumes of data

● A well-designed cipher is only subject to
brute-force attack; the strength is therefore
directly related to the key length.

● Current recommendation is a key length of at
least 90 bits

● i.e. to be fairly sure that your data will be safe for at least
20 years

● Problem - how do you distribute the keys?

NSRC@ccTLD Advanced
Amsterdam

Public/Private Keys

We generate a cipher key pair. One key is the
private key, the other is the public key.

The private key remains secret and should be
protected.

The public key is freely distributable. It is
related mathematically to the private key, but
you cannot (easily) reverse engineer the
private key from the public key.

Use the public key to encrypt data. Only
someone with the private key can decrypt.

NSRC@ccTLD Advanced
Amsterdam

Example (Public/Private Key pair):
Not Efficient – Not as Secure

clear
text

clear
textk1

(public key)

k2

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it.

This is a big deal!

NSRC@ccTLD Advanced
Amsterdam

Why Not Efficient/Secure?
● Symmetric ciphers (one private key) are

much more efficient. About 1000x more
efficient than public key algorithms for data
transmission!

● Attack on the public key is possible via
chosen-plaintext attack. Thus, the
public/private key pair need to be large (2048
bits).

NSRC@ccTLD Advanced
Amsterdam

Why Not Efficient/Secure
cont.

Mathematically we have:
E = the encryption function

C = ciphertext

P = plaintext

C = E(P)

So, if you know one P encrypted by E, then
you can attack by guessing all possible
plaintexts and comparing with C. E is
public in this case. Thus, you can recover
the complete original text.

NSRC@ccTLD Advanced
Amsterdam

Hybrid Systems

Symmetric Ciphers are not vulnerable in the
previous way. The key length can be much
shorter.

So, we do this:
– Use a symmetric cipher.

– Generate a one-time private key.

– Encrypt the key using a public key.

– Send it to the other side, decrypt the one-time key.

– Start transmitting data using the symmetric cipher.

NSRC@ccTLD Advanced
Amsterdam

Hybrid Systems

Use a symmetric cipher with a random key (the
"session key"). Use a public key cipher to encrypt
the session key and send it along with the
encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)

NSRC@ccTLD Advanced
Amsterdam

Hybrid Systems cont...

Two things should (imho) stand out:

1) “Send it to the other side, decrypt the one-time
key.” How?

2) What about protecting your private key?

Any ideas?

NSRC@ccTLD Advanced
Amsterdam

Hybrid Systems cont...

1) “Send it to the other side, decrypt the one-
time key.” How?

Use your private key.

2) What about protecting your private key?

Encrypt it using a hash function.

NSRC@ccTLD Advanced
Amsterdam

One-Way Hashing Functions

A mathematical function that generates a fixed
length result regardless of the amount of
data you pass through it. Generally very fast.

You cannot generate the original data from the
fixed-length result.

Hopefully you cannot find two sets of data that
produce the same fixed-length result. If you
do this is called a collision.

NSRC@ccTLD Advanced
Amsterdam

One-Way Hashing Functions
cont.

Two popular hashing functions include:
– md5: Outputs 128 bit result. Fast. Collisions found.

– sha-1: Outputs 160 bits. Slower. No collisions yet.

Applying a hashing function to plaintext is called
munging the document.

The fixed-length result is referred to as a
checksum, fingerprint, message digest, etc.

NSRC@ccTLD Advanced
Amsterdam

Hashing
One-Way Encryption

clear
text

Munging the document gives a short
message digest (checksum). Not possible to go

back from the digest to the original document.

Fixed length hash
or message digest

hashing
function

NSRC@ccTLD Advanced
Amsterdam

Hashing
one-way encryption: another

example

Note the significant change in the hash sum for minor changes in the
input. Note that the hash sum is the same length for varying input
sizes. This is extremely useful.

*Image courtesy Wikipedia.org.

NSRC@ccTLD Advanced
Amsterdam

Examples
● Unix crypt() function, based on DES (not secure!)

● MD5 (Message Digest 5) - 128 bit hash

● SHA1 (Secure Hash Algorithm) - 160 bits

● Until August 2004, no two documents had been
discovered which had the same MD5 digest!

● Such "collisions" are not a major problem as yet
● No collisions have yet been found in SHA-1

● Still no feasible method to create any document
which has a given MD5 digest

NSRC@ccTLD Advanced
Amsterdam

What use is this?
● You can run many megabytes of data through a
hashing function, but only have to check 128-160
bits of information. A compact and unique
document signature.*

● You can generate a passphrase for your data –
such as your encrypted private key. If someone
gets your private key, they still must know your
passphrase to decrypt anything using your private
key.

* Even with the recent attack, at best the attacker could add some corruption and
leave the MD5sum unchanged. They could not insert any data of their own choosing.

NSRC@ccTLD Advanced
Amsterdam

Protecting the Private
Key

k2

(encrypted
on disk)

Passphrase
entered by

user

k2
ready

for use

hash

symmetric
cipher

key

K2
= private key*Such as MD5, SHA-1, etc.

NSRC@ccTLD Advanced
Amsterdam

Checking
passphrases/passwords

Q.) How do you do this?

A.) It's very simple.

– Type in a passphrase/password.

– Run the hashing function on the text.

– If the message digest matches, you typed in the
correct passphrase/password.

NSRC@ccTLD Advanced
Amsterdam

Digital Signatures

Let's reverse the role of public and private keys.
To create a digital signature on a document do:
– Munge a document.

– Encrypt the message digest with your private key.

– Send the document plus the encrypted message
digest.

– On the other end munge the document again and
decrypt the encrypted message digest with the
person's public key.

– If they match, the document is authenticated.

NSRC@ccTLD Advanced
Amsterdam

When
authenticating:

Take a hash of the document and encrypt only
that. An encrypted hash is called a "digital
signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

NSRC@ccTLD Advanced
Amsterdam

Digital Signatures have
many uses, for example:

● E-commerce. An instruction to your bank to transfer
money can be authenticated with a digital signature.

● A trusted third party can issue declarations such as "the
holder of this key is a person who is legally known as
Alice Hacker"

Like a passport binds your identity to your face

● Such a declaration is called a "certificate"

● You only need the third-party's public key to check the
signature

● We'll talk about this more later.

● DNSSEC

NSRC@ccTLD Advanced
Amsterdam

Use for Authentication:
Reverse the Roles of the

Keys

clear
text

clear
textk2

(private key)

k1

(public key)

cipher
text

If you can decrypt the document with the public key, it
proves it was written by the owner of the private key
(and was not changed).

NSRC@ccTLD Advanced
Amsterdam

Summary

The core idea you should take away from this is how
a hybrid cryptosystem works:

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)

NSRC@ccTLD Advanced
Amsterdam

Summary cont.

To view this mathematically we have:
E = the encryption function

C = ciphertext

P = plaintext: M=Message (binary data)

D = decryption function

K
1
 = encryption key (public)

K
2
 = different encryption key (private)

NSRC@ccTLD Advanced
Amsterdam

Summary cont.
Symmetric Cipher

EK2
(M) = C

DK2
(C) = M

With the property that:
DK2

(EK2
(M)) = M

And, with different keys (public/private) we have:
EK1

(M) = C

DK2
(C) = M

DK2
(EK1

(M)) = M

NSRC@ccTLD Advanced
Amsterdam

Summary cont.

Finally – Remember, we are using
open cryptosystems. This means that the
cipher algorithm is known and available.

The security of your data rests with the key, not
with keeping the cipher secret.

All Clear? :-)

Questions?

NSRC@ccTLD Advanced
Amsterdam

“Applied Cryptography”

Written by Bruce Schneier. This is, perhaps,
the best book around if you want to
understand how all this works.

● Crypto-Gram email newsletter
- http://www.schneier.com/crypto-gram.html

● Counterpane Security
- http://www.counterpane.com/

● A voice of reason around much of the
security hysteria we face today.

http://www.schneier.com/crypto-gram.html
http://www.counterpane.com/

NSRC@ccTLD Advanced
Amsterdam

 This page intentionally left blank

http://www.this-page-intentionally-left-blank.org/

NSRC@ccTLD Advanced
Amsterdam

Create a public/private key pair and place your
public key on your neighbor's machine.

For this exercise here are your neighbors:

pc1 <==> noc

pc2 <==> pc3

pc4 <==> pc5

pc6 <==> pc7

pc8 <==> pc9

Exercises

NSRC@ccTLD Advanced
Amsterdam

Open a terminal window as the admin user
(not root!).

$ ssh-keygen -b 2048 -t rsa

Choose all the defaults. Don't enter a
password.

First ssh to your neighbor:

$ ssh admin@pcN

What happened? What does it mean?

Exercises: ssh

NSRC@ccTLD Advanced
Amsterdam

Now exit your neighbor's machine

$ exit

On your machine copy your public key over to
your neighbor's admin account.

$ cd. ssh

$ scp id_rsa.pub admin@pcN:/tmp/.

$ ssh admin@pcN

$ cd .ssh [if no .ssh dir create one]

Exercises: ssh cont.

NSRC@ccTLD Advanced
Amsterdam

$ cat /tmp/id_rsa.pub >> authorized_keys

$ rm /tmp/id_rsa.pub

$ exit

$ ssh admin@pcN

What happened? Why?

Exercises: ssh cont.

NSRC@ccTLD Advanced
Amsterdam

Let's just prove this concept to ourselves.

You need to be root, so:

$ su -

cat /etc/motd

Lots of text, etc... Now we'll munge the
document using two hashing functions:

md5 /etc/motd > munge.txt

sha1 /etc/motd >> munge.txt

Exercises: munging

NSRC@ccTLD Advanced
Amsterdam

Now make some very minor change to the
/etc/motd document:

vi /etc/motd

Save your change and exit and we'll munge
again (note “>>”):

md5 /etc/motd >> munge.txt

sha1 /etc/motd >> munge.txt

Exercises: munging cont.

NSRC@ccTLD Advanced
Amsterdam

Now look at the file “munge.txt”:

cat munge.txt

The resultant hashes for /etc/motd should be
significantly different.

Exercises: munging cont.

	Security & Cryptographic Methods
	Core Security Principals
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Ciphers
	Examples of Symmetric Ciphers
	Features of Symmetric Ciphers
	Slide 11
	Example GPG With Symmetric Cipher
	Slide 13
	Slide 14
	Slide 15
	When Encrypting
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Hashing One-Way Encryption
	Hashing - one-way encryption: another example
	Examples
	q.) so what use is this?
	Protecting the Private Key cont.
	Slide 26
	Slide 27
	When authenticating
	Digital Signatures have many uses
	Reverse the Roles
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

