UNIX[™]/Linux Overview

Unix/IP Preparation Course July 19, 2009 Eugene, Oregon, USA

hervey@nsrc.org

History

Unix vs. Linux

Are they the same?

Yes, at least in terms of operating system interfaces Linux was developed independently from Unix Unix is much older (1969 vs. 1991)

Scalability and reliability

Both scale very well and work well under heavy load (this is an understatement (2))

Flexibility

Both emphasize small, interchangeable components

Manageability

Remote logins rather than GUI Scripting is integral

Security

Due to modular design has a reasonable security model Linux and its applications are not without blame

The Unix System

Kernel

The "core" of the operating system Device drivers

communicate with your hardware

block devices, character devices, network devices, pseudo devices

Filesystems

organise block devices into files and directories

Memory management

Timeslicing (multitasking)

Networking stacks - esp. TCP/IP

Enforces security model

Shells

Command line interface for executing programs DOS/Windows equivalent: command.com or command.exe

Also programming languages for scripting DOS/Windows equivalent: batch files

Choice of similar but slightly different shells

sh: the "Bourne Shell". Standardised in POSIX

csh: the "C Shell". Not standard, but includes command history

bash: the "Bourne-Again Shell". Combines POSIX standard with

command history.

Others: ksh, tcsh, zsh

User processes

The programs that you choose to run Frequently-used programs tend to have short cryptic names

```
"ls" = list files
```

"cp" = copy file

"rm" = remove (delete) file

Lots of stuff included in most base systems editors, compilers, system admin tools

Lots more stuff available to install too

Using the Debian/Ubuntu repositories

System processes

Programs that run in the background; also known as "daemons" ==> Examples:

cron: executes programs at certain times of day

syslogd: takes log messages and writes them to files

inetd: accepts incoming TCP/IP connections and starts

programs for each one

sshd: accepts incoming logins

sendmail (other MTA daemon like Exim): accepts incoming

mail

Security model

Numeric IDs

user id (uid 0 = "root", the superuser) group id supplementary groups

Mapped to names

/etc/passwd, /etc/group (plain text files)

Suitable security rules enforced

e.g. you cannot kill a process running as a different user, unless you are "root"

Any questions?

Core directory refresher

```
/ (/boot, /bin, /sbin, /etc, maybe /tmp)
/var
(Log files, spool, maybe user mail)
/usr
(Installed software packages)
/tmp
(May reside under "/")
```

Don't confuse the the "root account" (/root) with the "root" ("/") partition.

'Default' Partition

During an Ubuntu installation you can choose this option. It creates the following:

Root partition

this will contain everything not in another partition /bin, /sbin, /usr etc.

user home directories under /home

A swap partition for virtual memory /boot for kernel boot files

Partitioning Issues

/var may not be big enough
/usr contains OS utilites, third-party software
/home contains your own important data
If you reinstall from scratch and erase /home, you will lose your own data

Everything in "/" is now more common due to RAID. Why? Valid?

/tmp?

Others?

Note...

Partitioning is just a logical division If your hard drive dies, most likely *everything* will be lost.

If you want data security, then you need to set up mirroring with a separate drive.

Another reason to keep your data on a separate partition, e.g. / u

Remember, "rm -rf" on a mirror works very well.

Or, as always "Data Security" <==> Backup

Any questions?

What's Different

Software management

```
dpkg
```

apt (this is what we'll use)

apt-cache

aptitude

synaptic

meta-packages

repositories

What's Different cont.

Startup scripts

In /etc/init.d/ (System V)

Upon install services run!

Controlling services

update-rc.d

sysvconfig

rcconf

rc-config

What's Different cont.

Make and GCC

- Not installed by default. Why?
- 30,000'ish packages
- To install:

```
apt-get install build-essential
```

What's Different cont.

The use of the *root* account is discouraged and the *sudo* program should be used to access root privileges from your own account instead.

You can do apt-get dist-upgrade to move between major and minor releases.

Package sources in /etc/apt/sources.list (how you install from cd/dvd or the network).

Important Reads

man apt-get man sources.list

Some people like aptitude, partly for the fullscreen interface

Meta Packages

Annoying to new users Provide all packages for subsystems Initial documentation

https://help.ubuntu.com/community/MetaPackages

Examples include:

```
build-essential (libc, g++, gcc, make)
ubuntu-desktop (xorg, gnome)
xserver-xorg-video-intel
```

There's More

But, hopefully enough to get us started...

Some Resources

www.ubuntu.com

ubuntuforums.org

www.debian.org

ubuntuguide.org

http://en.wikipedia.org/wiki/Debian

http://en.wikipedia.org/wiki/Ubuntu_(Linux_distribution)

GIYF (Google Is Your Friend)

Packages & Exercises

We'll reinforce some of these concepts using exercises...