
Advancd Registry Architectures
Robust, Reliable, and Resilient Registry Operations

Advanced Registry Operations
Curriculum

Registry Definitions

•  Publishes one or more zones (think TLD
and SLD)

•  Manages delegations
•  Publishes public (!) information (WHOIS)
•  Possibly, receives payment for the service

What's a (ccTLD) registry ?

Inputs
-  Domain Name System requests
-  Creation/deletion/modification requests of

domain names
-  Add nameservers (name + IP)
-  Administrative information (registrant, tech

contact, billing contact, ...)

Data flows

Output:
-  Answer DNS queries
-  Zones with delegations (publication)
-  Glue records (for nameservers which are within

the zone being delegated)
-  Publication of WHOIS

Data flows

Registry flows

Architecture

DB	

REGISTRY	

DNS	
 WHOIS	
 DNS	
 DNS	

Registry architecture

External interfaces

DB	

REGISTRY	

DNS	
 WHOIS	
 DNS	
 DNS	

resolver	
 resolver	

TCP/UDP	
 port	
 53	

WHOIS	
 client	

TCP	
 port	
 43	

Registrar	

Registrar	

Registrar	

EPP,	
 Webservice,	
 Mail,	
 …	

•  Add and remove records (redelegation)
•  Add/modify/remove nameservers

(modification is effectively a redelegation)
•  Update of administrative data (whois info)

What operations ?

How complex can it get ?

•  It can be as simple as a text zone file with
comments in it

•  Maintained with Ten Finger Interface
...

; SomeCompany

; contact John Dough, +1 123 123 4567, ;
john@somecompany.mytld

somecompany NS ns1.othertld.org.

 NS ns.somecompany

ns.somecompany A 1.2.3.4

...

Pretty simple operational model

•  Add a delegation
-  Creation of domain

•  Change a delegation
-  Domain dedelegation

•  Remove a delegation
-  Domain destruction

•  Every operation can impact delegation
entries, glue records, whois data

Terminology

•  Registry: Institution or organisation which
maintains the zone and administrative data

•  Registrant: Physical or moral person which
is responsible for a domain name

•  Registrar: Organisation managing domain
registrations on behalf of registrants

Different models: 2R

Simple registry models – no registrars
The registrant is in direct contact with the

registry. This is also called a ”single
access” registry.

REGISTRY	

Registrant	
 Registrant	
 Registrant	

Different models: 2R

It remains a single access registry, even
though it may or may not allow resellers:

REGISTRY	

Reseller	
 Reseller	
 Registrant	

Registrant	
 Registrant	

Different models: 3R

Shared access registry

REGISTRY	

Registrar	
 Registrar	
 Registrar	

Reseller	
 Reseller	
 Registrant	

Registrant	
 Registrant	

Thick vs. Thin

•  Indicates how the WHOIS is placed/
distributed

•  Dependes on where the DB is located
-  Thin: .COM, .NET: administrative data are

spread across the various registrars
-  Thick: .INFO – the administrative data are

centralized at the Registry

Flat or hierarchical

•  Flat
-  A flat design allows any name directly under

the top-level country-code domain (i.e., the
second-level domain or SLD). For example,
nsrc.cctld.

•  Hierachical
– A hierarchical design provides categorized or

affinity groups at the second-level. For
example, mycollege.edu.cctld, where "edu"
specifies educational institutions.

Evolution of a registry
From most simple…

-  Text zone file with comments
-  Domain registration via email
-  No whois, or manually updated
-  No registrars or resellers, 2R

…To most complex
-  Relational database, Transaction, automated

billing
-  WHOIS, EPP, Web interface
-  3R with multiple registrars
-  Anycasting of DNS servers

EPP
•  RFC3730
•  Supercedes RRP (RFC2832)
•  Extensible Provisioning Protocol
•  Based on XML
•  Used by an increasing number of registries

and registrars
•  Not all ”modern” registries have adopted it

yet!
•  RFC4310 describes the DNS security

Extension Mapping for the EPP

WHOIS

•  Fetch meta-information about a domain,
including administrative data (name,
address, phone contact, …)

•  RFC 954
-  Not formally specified as a protocol
-  Output from different Registrars and

Registries can look different (and often
does)

•  RFC 3912
-  TCP port 43

Registry-Registrar relationship

•  Usually, the relationship between a registry
and a registrar is based on a contract.

•  Some registries require that companies
applying to become a registrar to follow an
accreditation procedure.

•  Criteria to be accredited:
- Technical stability
- Corporate status
- Financial stability
- Organizational stability
- Other

Registry-registrar relationship:
the accreditation

When the relationship between the registry and
the registrars is based on a contract, the
registry should take into account some
aspects:

- Contract transfer and related domain names
transfer

- Rescue procedures for those registrants (and
domain names) whose registrars
“disappeared” or went bankrupt

- Penalties in case the registrar is not up-to-date
with the payments to the registry

Registry-registrar relationship:
some contractual aspects

•  Code of conduct:
-  In order to ensure that the domain name

holder can count on reliable information and a
quality service, some registries have proposed
a code of conduct to registrars

-  Most code of conducts are based on voluntary

principles, but help the users trust the
overall process

Registry-registrar relationship:
the code of conduct

Communication tools:
-  E-mail lists
-  Regular meetings
-  Help-desks
-  Newsletter
-  Dedicated web interfaces

Registry-registrar relationship:
communication methods

Web interfaces:
- Wide accessibility highly desirable
- EPP based systems

Usually, divided in two sections:
- Public information
- Restricted information for registrars or ISP

Registry-registrar relationship:
the web interfaces

Relational databases

Look at this from the viewpoint of database use vs. a
spreadsheet or flat file:

 Why use a database?

DB Spreadsheet/FlatFile

Multi-user access. Single user access

Speed and available
complexity of queries.

Slow updates

Easy to extend. Need script language
Keep access to your data
secure.

File based protection (all or
nothing)

Maintaining data integrity. Protect cells, but fragile
Relational queries. Formula like, not optimized

for queries

What types of problems are we trying to solve
or avoid?
• 	
 Large zone file maintenance.
•  Customer accounting.
•  Customer service and tracking.
•  Making sure that your data is correct.
•  Keep your data secure:

-  Customer records.
-  Accounting records.	
 	

 What's the problem?

1.  A flat file (spreadsheet) can only be accessed by
one person at a time.

2.  As your organization grows you may have
multiple people needing access to update
records (aliases, mx records, A records, etc.).

3.  Multi-user access means better customer service
and better efficiency, and a lowered risk of
inconsistencies (simultaneous update of a
registration by two employees)

 Multi-user access

Multi-user access is a prerequisite for being
able to expand the operations of the registry:

– The marketing and business development
departments will want to generate reports
(popular names, average registration time,
etc...)

– The billing department will need to update the
DB (directly or not) to mark delegations for
which no renewal fee has been paid (mostly in
Registry-Registrant, or 2R, models)

 Multi-user access (2)

Reminder 1

Reminder 2

Multiple users accessing zone file information
via a database:

-  Now you can create a programatic interface to
generate your zone file.

-  Zone file can be generated at regular intervals
without human intervention.

-  Database can ensure that data entered is
unique to create correct zone files.

-  The DB Schema itself can be modified to
accommodate changes

DB: Easy to extend

•  You want to know that your data is not
corrupt and you want to keep it that way.

•  A well-designed database can help “force”
your organization to enter correct data.

•  A database can verify data relations and
integrity of your data.

•  Databases have many tools for backup,
recovery, cleanup, and data checking.

DB: Maintaining data integrity

•  This is something that you cannot do in a
spreadsheet. Queries are limited.

•  A relational database lets you create multiple
tables with records, and connect these.

•  You can view your data in many different ways.

•  Finding relations, querying for them, and getting
results is an extremely powerful feature of
relational databases.

DB: Relational Queries

A well-designed database allows for
extremely fine-grained queries on very large
sets of data. These queries are:

-  Fast!
-  You can mathematically guarantee the

correctness of queries using boolean logic.
-  You can guarantee completeness of results.
-  And, did I say the queries were “fast!”...

Speed and complexity of queries

By public databases we mean:

•  Database software that is available under “free”
licenses.

•  Database systems developed in a public forum.
•  Commercial databases must be purchased.
•  Commercial databases require you to pay for

newer versions.
•  Both public and commercial databases have

support contracts that you can pay for.
•  Public databases have a legacy of user

community support that is very effective.

Public databases

Some Database Choices

Public databases
 - MySQL: www.mysql.org*

 - PostgreSQL: www.postgresql.com

 - MiniSQL: www.hughes.com.au

Some “not” public databases
 - Oracle: www.oracle.com
 - IBM’s DB2: www.ibm.com/db2

 - Microsoft SQL: www.microsoft.com/sql

MySQL and PostgreSQL

Religious wars have been started over the
question, “Which is better?”

 versus
One general opinion (imho) goes like this:

PostgreSQL has more advanced database features
and is more complete while MySQL has a huge
developed base of applications, is easier to use,
and is very fast for small to medium sized db's.

MySQL and PostgreSQL cont.

•  Both are available for Linux and FreeBSD.
•  Both are free.
•  Both have tools for administering them

graphically.
- pgAdmin and phpPgAdmin, etc.
- MySQL Workbench, phpMyAdmin, etc.
- Lots more for both, including web-based tools.

•  Both can be accessed from your favorite
programming language.

•  Both are used to create dynamic web sites.

Some Flies in the Ointment…

MySQL appears to be in trouble (May 2010):
•  Oracle bought MySQL (via Sun) in 2009
•  MySQL core developers and founders have left

the project (before the Oracle purchase)
•  Oracle bought MySQL’s query engine (innodb)
•  MySQL competes with Microsoft SQL Server

(low to mid-range market), so maybe there’s
incentive to keep it around, but who will develop
future MySQL releases?

•  MySQL has been forked several times.
•  MySQL “6.0” release no where to be seen…

Acronyms!

“LAMP”
– Linux, Apache, MySQL, Php
“FAMP”
– FreeBSD, Apache, MySQL, Php
“LAPP”
– Linux, Apache, PostgreSQL, Php
“FAPP”
– FreeBSD, Apache, PostgreSQL, Php

 etc…

 Customer:
-  Accounting records
-  Transactions
-  Support

 Zone file:
-  Domain records

Relations:
-  Customer
-  Domains

Types of data to store

• Your choice of language:
-  PHP, Perl, Python, ...
-  C, C++
-  etc...

•  Need to generate a valid zone
•  Validation of data entering the DB and leaving it
•  Look through all records (ensures completeness).
•  Built dynamically so you can still be accessing

your zone and customer data at the same time.

 Generating a Zone file from a database

create table data (
 zone text, – ”nsrc.org.”
 name text, – ”www”
 ttl text, – ”3600”
 rdtype text, – ”A”
 rdata text, – ”128.223.157.19”
 locked bool, – ”t”
 comments text, – ”Website for NSRC.org”
 dynamic bool, – ”f”
);

 Sample schema

 Sample schema

Note that the zone file contains only a subset
of the data to be found in the DB.

For instance, registrant information,
comments, date of registration, etc... are
not exported to the zone file.

Likewise, a WHOIS server will not show zone
data – possibly which NSes are published
for a given zone.

CoCCA:	
 h'p://sourceforge.net/projects/coccaopenreg/	

	
 ConsorHum,	
 Council	
 of	
 Country	
 Code	
 Administrators	

CodevNIC:	
 h'p://codev-­‐nic.generic-­‐nic.net/	
 	

	
 	
 .fr	
 project,	
 Co-­‐developped	
 NIC	

DNRS:	
 h'p://sourceforge.net/projects/dnrs/	

	
 .nz,	
 Domain	
 Name	
 Registry	
 System	

FRED:	
 h'p://fred.nic.cz/	

	
 .cz,	
 Free	
 Registry	
 for	
 ENUM	
 and	
 Domains	

Some registry tools (free to use)

CoCCA:	
 h'p://sourceforge.net/projects/coccaopenreg/	

	
 ConsorHum,	
 Council	
 of	
 Country	
 Code	
 Administrators	

CodevNIC:	
 h'p://codev-­‐nic.generic-­‐nic.net/	
 	

	
 	
 .fr	
 project,	
 Co-­‐developped	
 NIC	

DNRS:	
 h'p://sourceforge.net/projects/dnrs/	

	
 .nz,	
 Domain	
 Name	
 Registry	
 System	

FRED:	
 h'p://fred.nic.cz/	

	
 .cz,	
 Free	
 Registry	
 for	
 ENUM	
 and	
 Domains	

Some registry tools (free to use)

Reliable, Robust and Resilient
Registry Operations

Databases are more complex than flat text
files or spreadsheets

Corruption, operational errors, vandalism: all
can render the DB unusable

Backup is of course a must, but consider DB
replication or storage replication to
minimize downtime:

Storage	
 Storage	

Manager	

(slave)	

Manager	

(master)	

Client	

app	

DB	
 repl	
 backup	

Store	

repl	

Database availability

Registry Services availability

•  It is tempting to use a DB and perform ”real
time” publication of the zone and WHOIS

•  There are inherent risks to this, such as
outline in the previous slide

•  DB is weakest link (complex systems fail
more often than simple ones), versus the
nameserver or the WHOIS service

•  Consider decoupling zone storage and data
publication

Registry Services availability (2)

•  For instance, re-publish the zone file at
regular intervals

•  This fits well with DNSSEC, where zone
RRs need to be regularly resigned

•  The same goes for WHOIS data
•  Having a separate process generating the

zone file and WHOIS from the DB, means
that these services can continue to run, in
the worst case scenario that the DB
crashes

Registry Services availability (3)

Another solution is to have a ”hidden master”
setup. It can itself be directly linked to the
DB, but public-facing nameserver instances
are slave (Secondary) copies of the master.

Zone signing
(DNSSEC) is another factor to consider.

DB	

Master	
 NS	

dynamic	

FW	

Slave	

NS	

Slave	

NS	

Slave	

NS	

push	
 push	

push	

Registry Services availability (4)

•  Registration services need not fail entirely
either.

•  Protocols like EPP do imply having access
to a DB for modification of registrations

•  But it is still possible to build the service
handling creation to queue the requests
until the DB becomes available

•  It is a matter of policy to decide which
approach to adopt

Maintaining a trail of changes

•  When the zone is a text file or a
spreadsheet, it's fairly easy to keep track of
changes to the zone:
- Make a copy of the zone with a timestamp everytime

you make a change
- Can be automated.

•  How does one do this with a DB?
- When exporting the zone to a text file, version it (we'll

see this) or implement versioning in the DB (more
complex, but extremely useful)

- What granularity?

Anycasting DNS servers

Many Name servers for a ccTLD
- For redundancy
- Traffic load
- Better response time

Secondary servers must be placed at both
topologically and geographically
dispersed locations on the Internet

 - RFC 2182
 - AfriNIC, RIPE NCC, ISC, PCH, PSG.COM,

NSRC,etc... provide secondary DNS services for
ccTLDs

DNS services

Benefits of anycast
- Transparent fail-over redundancy
- Load balancing
- Latency reduction (“nearest” instance is ”picked”)
- Attack mitigation (difficult to take down many

instances)
- Configuration simplicity (for end users) (for

example using a single IP for recursive service)
Some of listed secondary service providers in the

previous slide run Anycast.
There are some commercial anycast DNS service

providers.

Anycasting of DNS service

• Has a single IPv4 or IPv6 address
• Requests sent to these addresses are

routed to different nameservers,
depending on the origin of the request

• This behavior is transparent to devices
which send requests

Anycast DNS servers

Anycast Routing

• Some Anycast nodes provide service to the
entire Internet (global nodes)
- very large, well-connected, secure and over-

engineered nodes
• Others provide service to a particular region

(local nodes)
- Smaller

• Each local node’s routing is organised such
that it should not, under normal
circumstances, provide service for clients
elsewhere in the world – attract local traffic

Hierarchical Anycast

Integrity of secondary zone data

Master	
 NS	

FW	

Slave	

NS	

Slave	

NS	

Slave	

NS	

push	
 push	

push	

Reminder

Consider securing communications
between master and slaves via TSIG – or
use a secure replication mechanism like
SSH/rsync to push the zones.

Questions?

