Link budget

Sebastian Büttrich, NSRC

edit: sept 2010, GARNET

Elements of a radio link

- Effective transmit power: transmit power [dBm] -(cable + connector) loss [dB] + amplifier gain [dB] + antenna gain [dBi]
- Propagation loss [dB]: Free space loss [dB]
- Effective receiving sensibility: antenna gain[dBi]
 + amplifier gain [dB] cable loss [dB] receiver
 sensitivity [dBm]

The elements one by one

- Complete radio link calculation is simply a sum of all contributions, as long as all values are in dBs
- All positive values are gain
- All negative values are losses

Terms

- Link Budget / Power Budget / System gain
- System operating margin
- SNR: Signal-to-Noise ratio
- EIRP: Effective Isotropic Radiated Power

Transmit power

- what comes out of the radio unit
- depends on legal limits and thus on country/region
- check vendor's tech specifications
- typical in 802.11b:
 15 ... 20 dBm (30 ... 100 mW)

Transmit Power

Example from a 802.11a/b card:

Output Power:

802.11b: 18 dBm (65 mW) peak power

802.11a: 20 dBm (100 mW) peak power

Cable loss

- Rule: Antenna cable should be as short as possible
- Typical loss values range from 1 dB/m down to < 0.1 dB/m
- Frequency dependent
- Check datasheets (and verify)

Cable loss: typical values

•	A ntenna	Type	loss	[dB/100m]
---	-----------------	------	------	-----------

• RG 58 ca. 80-100 "thin black"

• RG213 ca. 50 "big black"

• LMR-200 50

• LMR-400 22

• Aircom plus 22

• LMR-600 14

• 1/2" Flexline 12

• 7/8" Flexline 6.6

Cable loss – connectors

- Allow at least 0.25 dB (loss) for each connector in your cabling
- Check data sheets for loss at your frequency
- Lightning arrestors (circa 1 dB)

Amplifiers

- optionally, amplifiers might be used
- high quality amplifiers are expensive
- amplifiers may change frequency characteristics (broadening) and add noise
- intelligently optimized antennas and high receive sensitivity are better than brute force amplification
- consider legal limits

Antenna – TX

- Antenna gains range:
 2 dBi (simple integrated antennas)
 5 dBi (standard omnidirectionals)
 up to
 25-30 dBi (paraboles)
- verify that you really get nominal gain (tilt losses, polarization losses, etc)

Free Space Loss

 Proportional to the square of the distance and also proportional to the square of the radio frequency

$$FSL [dB] = C + 20 * Log(D) + 20 * Log(F)$$

D distance, and F frequency [MHz]. The constant C is 36.6 if D is in miles, and 32.5 if D is in kilometers.

Free Space Propagation: Fresnel zones

• r = 17.33 sqrt(d1*d2/f*d) radius for first zone [m]

d1, d2 distances from obstacle to link end points, d link distance [km], f [GHz]

• if d1 = d2 (= obstacle in the middle)

$$r = 17.33 \text{ sqrt } (d / 4*f)$$

• r(60%) = 10.4. (d/4*f)

Antenna – RX

Same as Antenna – TX

Cable on receive side

same as on transmit side

Amplifiers on receive side

- same as on transmit side
- again, not a suggested method

Receive sensitivity

- Typical values are circa -85 dBm for maximum data rate
- Example: Orinoco cards PCMCIA Silver/Gold 11Mbps => -82 dBm; 5.5Mbps => -87 dBm; 2Mbps=> -91 dBm; 1Mbps=> -94 dBm.
- Example: Senao 802.11b card
 11 Mbps => -89dBm; 5.5 Mbps => -91dBm
 2 Mbps => -93dBm; 1 Mbps => -95dBm

```
    Transmit output + 015 dBm
```

FSL (50 km / 31.1 miles at 2.4 Ghz)

- 134 dB

Antenna RX + 024 dBi

Cable + Connectors - 003 dB

Receive Sensitivity - 085 dBm (subtract!)

_

TOTAL

+ 008 dB margin

- Transmit output
- Cable + Connectors
- Antenna TX
- FSL (1 km / 0.622 miles at 2.4 Ghz)
- Antenna RX
- Cable + Connectors
- Receive Sensitivity

- + 018 dBm
- 005 dB (low quality cabling)
- + 005 dBi (an omni)
- 100 dB
- + 008 dBi (patch antenna
- 005 dB (bad again :)
- 092 dBm (subtract!)

TOTAL

+ 13 dB margin

