

What's AAA?

= Authentication

= "Who are you?"
= Authorisation

= "What are you allowed to do?"
= Accounting

= "What did you do?"

Centralised

= Because we need control of the systems we own and
manage

= We need scalability in management

= e.g. not have to reconfigure hundreds of machines
every time someone joins or leaves

= We need something which 1s auditable - confidence
that we haven't accidentally missed something

Solution presented here

= KERBEROS for authentication, LDAP for
authorisation (and SYSLOG for accounting)

= We'll be using open source: MIT Kerberos and
OpenL.DAP

= Microsoft Active Directory 1s basically Kerberos +
LDAP + DNS; 1f you like 1t, by all means use it

= Microsoft's tweaked versions of protocols

= May require extra configuration, e.g. install
Microsoft Services For Unix (SFU)

Kerberos overview

Based on symmetric (private key) cryptography
= Secure, fast, scalable
Provides true single sign-on

= Type your password once at start of day

= Your password 1s never sent to services you use!

KDC: Key Distribution Centre

REAILM: Collection of users and machines which

all trust the same KDC. Named in UPPER.CASE to
distinguish from a DNS domain

Informal protocol design: hitp://web.mit.edu/kerberos/www/dialogue.html

http://web.mit.edu/kerberos/www/dialogue.html

KDC Database

= A simple table of "things" and "passwords"

= USCTS:
= myname@WS.NSRC.ORG
hosts:
= host/noc.ws.nsrc.org@WS.NSRC.ORG

= Services:
= HTTP/www.ws.nsrc.org@WS .NSRC.ORG

Kerberos calls them all "principals”

Passwords (shared secrets) stored 1n clear text

= Actually, entered password munged 1nto a binary key

mailto:myname@WS.NSRC.ORG
mailto:host/noc.ws.nsrc.org@WS.NSRC.ORG
mailto:HTTP/www.ws.nsrc.org@WS.NSRC.ORG

Shared secrets

Shared secret
(user password)

User
Password in brain

principal key
myname@FOO XXXXX
host/noc.ws@FOO YYYYY
KDC
realm FOO

Shared secret
(host key)

NOC.WS

Host

Key in /etc/krb5.keytab

Prove identity via "tickets"

When you want to access a service, you first obtain
a "ticket" for that service

The KDC sends you the ticket, which 1s encrypted
with the service's key

= Only the KDC and the service know this key

= Hence the service knows that the ticket must have
come from the KDC

You never send your password to the service

Tickets are time-limited (typically 10 hours)

Ticket Granting Service

KDC TGS

Ticket request
for noc.ws

Ticket

(encrypted with
noc.ws secret)

@ Login + Ticket
> NOC.Ws

Ticket stored in cache file,
can be reused until expires

Decrypt ticket
Check timestamp

Obtaining tickets

Each ticket 1s only readable by one particular
host/service, so you need to obtain a ticket for each
one

To avoid having to enter your password each time,
you first obtain a master ticket: a "ticket granting
ticket"

Your TGT 1s encrypted with your own password,
and decrypted when you receive it

Unix program: Kinit

= See also: Kklist, kdestroy

Authentication Service

KDC AS
Authenticaton /.
request | Future-proof:
TGT - The AS can be replaced
(encrypted with with another auth mechanism |

user's password) (e.g. smartcards), but the

@ - TGT and tickets are the same

Kinit
Decrypted TGT stored in cache file

Practical: Kerberos client

sudo apt-get install krb5-user
sudo editor /etc/krb5.conf

delete everything, replace with this:
[libdefaults]
default realm = WS.NSRC.ORG

dns lookup realm = true -
dns lookup kdc = true - Magic which I will explain later

sudo editor /etc/ssh/ssh config # O0SX: /etc/ssh config
GSSAPIAuthentication yes # check this line
GSSAPIKeyExchange yes # optional extra

kinit testuser

enter password when prompted

ssh testuser@noc.ws.nsrg.org

logout, then login somewhere else
ssh testuser@sl.ws.nsrc.org

Simple enough?

= Easy to train your users - they don't need to know
how 1t works

= Little work to configure client machines (scalable)

= Of course, we had to build the server side first :-)

Multi-protocol support

= What we've seen so far 1s stmilar to what you can do
with ssh + pubkey authentication + ssh-agent (*)

= But Kerberos can authenticate many other protocols:
POP3, IMAP, HTTP, LDAP, even telnet!

= Bolt-on using SASL and GSSAPI

= Also optionally adds encryption to those protocols

= Oh, and 1t does mutual authentication too

= No need to have CA certificate or ssh host keys

(For ssh, set "GSSAPIKeyExchange yes" on server and client)
http://www.sxw.org.uk/computing/patches/openssh.html

(*) You can even forward your kerberos tickets to another host, like ssh agent forwarding

http://www.sxw.org.uk/computing/patches/openssh.html

Demo: HTTP with Kerberos

http://noc.ws.nsrc.org/secure

You need to configure your client to attempt Kerberos
authentication.

For curl
curl --negotiate -u : http://......

For Firefox

Go to about:config

Filter on "negotiate"
network.negotiate-auth.trusted-uris WS .NSrc.org

For Google Chrome

Start using:

/opt/google/chrome/google-chrome \
—--—auth-server-whitelist=*.ws.nsrc.org

Use kdestroy and kinit to convince yourself!

Demo: LDAP with Kerberos

sudo apt-get install ldap-utils
sudo apt-get install libsasl2-modules-gssapi-mit

ldapsearch -Y GSSAPI -H ldap://ldap.ws.nsrc.org \
-b "dc=ws,dc=nsrc,dc=org" " (cn=*test*)"

Note:
(1) No password prompt! (kdestroy to confirm)
(2) Data encrypted (tcpdump to confirm)

Locating KDCs for realm

= Client needs to locate the KDC(s) for a realm

= This can be statically configured in krb5.cont

= [realms]
WS.NSRC.ORG = {
kdc = kdcl.ws.nsrc.org
kdc = kdc2.ws.nsrc.org
admin server = kdcl.ws.nsrc.org

}
= Or we can lookup SRV records in DNS

= This saves configuration on the clients

$ dig kerberos. udp.ws.nsrc.org srv

;3 ANSWER SECTION:

kerberos. udp.ws.nsrc.org. 600 IN SRV 0 100 88 kdcl.ws.nsrc.org.
kerberos. udp.ws.nsrc.org. 600 IN SRV 0 100 88 kdc2.ws.nsrc.org.

Host to realm mapping

= When you connect to a host, you need to know what
realm 1t 1s in (so client can get the right ticket)

= You can configure this statically in krb5.cont

= [domain realm]
.ws.nsrc.org = WS.NSRC.ORG

= Or again you can use the DNS

Host to realm algorithm

= Reverse lookup IP to FQDN (foo.bar.baz.com)
= Look for TXT record in turn:

= _kerberos.bar.baz.com
= kerberos.baz.com

= kerberos.com

= Fallback 1s FQDN without hostname, uppercased

= Note: the "default realm" from krb5.conf isn't used

S dig _kerberos.ws.nsrc.org txt
s 3 ANSWER SECTION:
_kerberos.ws.nsrc.org. 600 IN TXT "WS.NSRC.ORG"

Importance of DNS

= It's critical that forward and reverse DNS 1s
correctly configured for all servers you connect to,
or 1t won't work

= Multi-homed hosts need care. Either:

= one hostname, multiple A records, all PTR records point
to same hostname

= or: separate hostname for each interface, with matching
forward and reverse

= See the Kerberos FAQ for more 1nfo

Kerberos gotchas

Clocks must be synced (within 5 minutes)
Realm must be in UPPER.CASE

Target must have correct forward+reverse DNS

Target must know 1ts own hostname
= Check "hostname", /etc/hostname

Not too difficult?

= 1f you can get these things right, you can turn off ssh
password authentication entirely

= 1f 1t breaks, can still get in on the console to fix it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

