Kerberos on Servers

"host" means ssh/telnet login to the server itself
"service" means applications like HTTP, POP3

In both cases you need to:

= 1. Enable Kerberos authentication in the software
= 2. Create a principal in the KDC
= 3. Put the corresponding key in a keytab file

What Microsoft calls "joining a domain”

Not much harder than adding clients

Kerberised sshd

editor /etc/ssh/sshd config

GSSAPIAuthentication yes
GSSAPIKeyExchange yes # when available

= Note: don't set "KerberosAuthentication yes"

= That really means password login, with the password
checked against KDC

= True Kerberos doesn't send the password at all

= When properly deployed you can turn off ssh password
authentication completely!

Creating the keytab

= Option 1: run kadmin on the target itself, using
kerberos administrator account.

= strong random key; copy across net 1s encrypted

kadmin -p username/admin
addprinc -randkey host/pcN.ws.nsrc.org

ktadd host/pcN.ws.nsrc.org

= Option 2: extract keytab on another machine, copy
to target e.g. with scp

= Option 3: set passphrase on KDC, use ktutil on
target with same passphrase (awkward 1n practice)

Kerberised Apache

= mod_auth_kerb in Ubuntu 8.04, RHEL 4 &up

<Location /secure>
AuthName "Hello Kerberos World"
AuthType Kerberos
Allow fallback to Basic Auth?
KrbMethodK5Passwd Off
KrbAuthRealms WS.NSRC.ORG
Krb5Keytab /etc/apache2/krb5/krb5.keytab
TODO: LDAP authorisation
require user testuser@WS.NSRC.ORG
requlire valid-user

</Location>

Kerberised Apache

= Create a service principal and a keytab which 1s
readable to the Apache user ("www-data")

= Depending on clients, may need to include principals
for both virtual server name and real server name

mkdir /etc/apache2/krb5

kadmin -p username/admin

addprinc -randkey HTTP/noc.ws.nsrc.org

ktadd -k /etc/apache2/krb5/krb5.keytab \
HTTP/noc.ws.nsrc.org

D

chown -R www-data:www-data /etc/apache2/krb5

chmod 550 /etc/apache2/krb5

chmod 440 /etc/apache2/krb5/krb5.keytab

Tickets aren't authorization

= A ticket 1s proof of your 1dentity to a particular
endpoint - nothing more (*)

= You can ask for tickets to prove your identity to any
principal you like. KDC doesn't care.

= Sounds a bit like certificates? It 1s!

= Uses symmetric cryptography instead of public/private
= Hence you need a separate ticket for each endpoint

= But symmetric crypto 1s cheap and fast

(*) Microsoft has bastardized the concept by including "Privilege Access Certificates" (PACs) in
tickets. In large AD deployments tickets can become huge, and hence logins slow.

Login authorization

sshd needs to decide whether to allow a particular
principal to login as a particular user

Default rule: map foo @ THIS.HOSTS.REALM to
system user "foo"

Default denies all users 1n other realms

You can add explicit authorization by putting
principal name(s) into ~/.k5login

= Like adding a key to ~/.ssh/authorized_keys, but simpler

mailto:foo@THIS.HOSTS.REALM

Login authorization (cont)

But we also need to know what uid for user "foo",
what groups they are in, their home directory etc

We don't want to distribute /etc/passwd files!

So contigure system to use LDAP database for
passwd and group info

Can restrict logins to particular groups (pam_access)

LDAP communication needs to be strongly
protected, by Kerberos or TLS

= LDAP i1s controlling privileges, so it's very important
that 1t's secure

getpwnam

libnss
‘ |
a
|
jocal files | Cnscd

|
|
\

libnss_Idap

|

LDAP query

Configuring LDAP

[etc/ldap.cont [man nss_Ildap]

= LDAP server and base DN; attribute mapping
/etc/nsswitch.cont

= use LDAP for passwd, shadow, group

/etc/nscd.conf

/etc/cron.hourly/kerberos

= obtain Kerberos ticket for name service caching
daemon to be able to query LDAP

Make your own tarball to deploy

Exercise

= Part one: set up your machine to accept Kerberos
authenticated logins

= Part two: set up your machine to use LDAP for
uid/g1d mapping

= We're doing it manually, but remember 1n real life
you'd deploy a tarball/package/script etc

Kerberos admin (kadmin)

= (Certain people are authorized to add/modity/remove
other principals via kadmin

= This 1s security critical

= How do we control 1t?

Option 1

= List all the authorized entities in the KDC ACL

* brtan@REALM *
= carlos@REAILM *
= hervey@REALM *

= Advantages:

= Clean separation of "authentication" and
"authorization”

= Disadvantages:
= Need to edit a file on the KDC to amend the ACL

mailto:brian@REALM
mailto:carlos@REALM
mailto:hervey@REALM

Option 2

= Admin users have a second 1dentity:
= username/admin @ REALM

= Pattern-matching ACL 1n the KDB
= */admin @REALM *

= Advantages:
= The ACL never needs adjusting

= You have to enter a different password when doing
"admin" things (more secure??)

= Some tools like kadmin have this as default
behaviour

mailto:username/admin@REALM

System root access

Some documents suggest having separate principals
for superuser access, €.g. username/root @ REALM

Authorize */root to login as root (or ksu)
Again, user has multiple 1dentities
I think this muddles authentication vs authorization

Can use sudo, but don't want to expose password

Can allow sudo with NOPASSWD for wheel group

= membership of this group 1s my authorization

mailto:username/root@REALM

Other services

= HTTP (Apache)

= Authorize users via LDAP groups
= Doesn't work with apache 2.0 / mod_auth_ldap
= Use apache 2.2 / mod_authnz_ldap (Ubuntu, RHELS5+)

= Access to LDAP database itself

= OpenLDAP can be configured with rules to map
principal to DN (olcAuthzRegexp)

= Then has 1ts own ACL for DN authorization

Switches and Routers

Some Cisco IOS 1mages support Kerberos

= You need an alternative, e.g. RADIUS or TACACS+, for
those which don't

I tried 1t, and couldn't make 1t work :-(

Supports authorization via instance mapping, €.g.
myname/enable @ FOO gives enable mode

Otherwise need to a static table in TACACS+ for
authorisation, or build a TACACS+ to LDAP bridge

There are also commercial solutions (Secure ACS)

mailto:myname/enable@FOO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

