

Kerberos Implementations

= RedHat 5 comes with MIT Kerberos 1.6
= Ubuntu 10.04 LTS comes with MIT Kerberos 1.8.1

= Admin through CLI, but from any remote machine
("kadmin" protocol runs over TCP)

= e.g. add / remove / modity principals

= Heimdal

= developed outside the US when exporting crypto
from the US was 1llegal

= AD

KDC Security

A compromise of KDC destroys the whole realm

Run 1t on a "dedicated" server
= Can probably live with LDAP too (non-root)
Firewall off everything except Kerberos ports

= kerberos: udp 88
= kadmin: tcp 749

= kpasswd: udp 464

Almost no-one should have local shell logins; use
kadmin (remotely) to administer database

KDC Security (cont)

Enable "pre-authentication” for all users

= In mmitial TGT exchange, user required to send hash of
their password (already default in Ubuntu)

= Makes 1t harder to do dictionary attacks

Disable Kerberos 4 (removed 1n MIT 1.7)

allow_weak_crypto=false (default from MIT 1.7)

= may need to keep arcfour (RC4) cipher if
interoperating with older Windows servers

Keep service keytabs and host keytabs separate and
protected via filesystem permissions!

primary/instance@REALM

Realms

= A realm 1s a collection of principals which trust the
same KDC

= Conventionally in UPPER.CASE to distinguish
from DNS domains

= A principal in one realm can get a ticket to prove
their 1dentity to a principal in another realm: this 1s
"cross-realm authentication”

= To do this, the KDC 1n the first realm must share a
key with the KDC 1n the second realm (*)

(*) Multi-hop through chain of KDCs also possible

Cross-realm authentication

principal key principal key
user@FOO XXXXX host/xyz@BAR YYYYY
krbtgt/BAR@FOO 17777 krbtgt/BAR@FOO 17777
KDC
FOO
TGT

(FOO) (BAR)

Ticket
(host/xyz@BAR)

>

user@FO0 host/xyz@BAR

Notes on cross-realm auth

= All communication 1s from client to KDCs and from
client to service

= Hence it works i1f the remote KDC and server are
outside of NAT

Cross-realm with firewalls

Firewall (can be NAT) remote data centre

7777777777777777777777777777

KDC
AD.OFFICE
(Windows)

A

-

user@AD.FOO

host/xyz@BAR

- - - _

Mixing office AD with MIT?

Keep your Windows domain (AD.OFFICE)

Remote data centre has its own realm, running MIT
Kerberos under Unix

Hosts share keys with their local DC's realm (and
hence are independent of AD)

Set up cross-realm authentication

Your password 1s only stored 1n the office AD, and
not in the data centre!

Notes

Windows users who have logged into AD don't even
need to kinit! (Kerberized putty - untested)

Unix users:
= kinit user [or kinit user@AD.OFFICE]

= or use pam_krb5 on your workstation to get tickets when you login

Data centre still needs 1ts own LDAP server

ssh fallback to password auth will only work for
users which exist in the DC's KDC

= Equally, you can have datacentre-only users not in AD

Realm mapping

= We want user foo@AD.OFFICE to login as system
user "foo" on machines in some different realm

= Bulk rule to avoid creating .k5login entries for every
user

= Configured 1n /etc/krbS.cont on each server

[realms]
WS.NSRC.ORG = {
auth to local
auth to local

}

RULE:[1:$1@$0](".*@AD\.OFFICES)s/@AD.OFFICES//
DEFAULT

mailto:foo@AD.OFFICE

Exercise

Put your machine in its own realm, e.g.
pcl.ws.nsrc.org 1s in REALM1.WS.NSRC.ORG

Build your own KDC
kinit to your own KDC

(Spare time exercises for cross-realm auth)

LDAP

"Lightweight Directory Access Protocol”

General rule: any protocol with "lightweight" o
"stmple" 1n its name, 1sn't :-(

The protocol and the data model are standardised

Use for passwd/group information 1s informal, but
widely implemented

= RFC2307 - "experimental”
= RFC2307bis - still only a draft (expired)

LDAP Data model

= Records are callec

| entries, containing attributes

= Entries 1identified

by unique Distinguished Name

= Permitted attributes from objectClass and schema

dn: uid=ldapuser,ou=People,dc=ws,dc=nsrc,dc=org
objectClass: account
objectClass: posixAccount

cn: ldapuser
uid: ldapuser
uidNumber: 10004
gidNumber: 100

homeDirectory: /home/ldapuser
loginShell: /bin/bash

LDAP protocol

A packed binary (ASN.1) protocol over TCP
Supports TLS and SASL

Small set of operations: bind (authenticate), search,
add, modity, delete, compare, modifyDN

Command-line tools e.g. ldapsearch, ldapadd,
ldapmodity ... entries in text format (LDIF)

Search options

= baseDN, scope, filter, attrs

OpenLDAP + Kerberos

A bit tricky but doable
Beware some of the HOWTOs on the net

= server config 1s now stored within LDAP itself
= "man slapd-config" for full info
= old HOWTOs may show you slapd.conf instead

= older Ubuntu created a default database

The handouts show how we built the class server

Care mapping Kerberos ticket realm to auth DN
(documentation 1s wrong: ITS#6757)

Managing users?

Adding/removing users via ldapadd/ldapdelete 1s a
bit painful
Write your own scripts, or use someone else's

= e.g. "ldapscripts” package - needs patching for
GSSAPI

Lots of GUI projects out there. If you find a good
one, let us know

Simple user management interface 1s probably the
main advantage of Active Directory if you have it

You may also come across...

= Using LDAP for Authentication (pam_ldap)

= User sends password to server; server checks it using
an LDAP bind operation

= Passwords are exposed repeatedly
= Needs TLS and certificates for security

= Critical security of ACLs, e.g. allow users to change
their own password but not see other people's!

= Using LDAP as a Kerberos data store

= Might simplify replication, but IMO the overall
complexity 1s unlikely to be worth it

Other projects

= FreeIPA under development, worth a look

= Integrates Fedora OS, Kerberos MIT, Red

Hat/Fedora Directory server, DNS server, Certificate
Authority, ...

= Easier to manage than just the individual
components? You decide.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

