
NSRC Workshop

Some fundamental security
concerns...

Confidentiality - could
someone else read my data?

Integrity - has my data been
changed?

Authentication - is this who
they claim to be?

Cryptography offers genuinely
secure solutions to these
problems

We'll look briefly at four main
components

NSRC Workshop

1. Hashes
(one-way encryption)

clear
text

Munging a document (of any size) gives a
short, fixed-length hash or message digest

Fixed-length
message digest

hashing
function

NSRC Workshop

Examples of Hash algorithms

MD5 - 128 bits of output

SHA1 - 160 bits

RIPEMD-160 - 160 bits

SHA256 - 256 bits

NSRC Workshop

Properties of Cryptographic Hashes

 Running the same hash algorithm on the same
document always gives the same result

 It is infeasible to modify the document whilst
keeping the hash the same - or even to find any
other document with the same hash

 Hence a powerful check of integrity

 Important: MD5 is now BROKEN!
– all it takes is 3 days and 200 playstation3's *

– SHA1 not yet, but has known weaknesses

* Google for "MD5 considered harmful today"

NSRC Workshop

Quick Exercise

On your PC: cat /etc/mailcap

Compare the result on your neighbour's PC

Are they exactly the same? Can you be sure?

Now do: sha1sum /etc/mailcap

Is your neighbour the same now?

Edit the file (joe /etc/mailcap) and change
just one character

Do again: sha1sum /etc/mailcap

NSRC Workshop

2. Symmetric Cipher
(private key cipher)

clear
text

clear
text

cipher text

K K

The same key is used to encrypt the document before
sending and to decrypt it once it is received

?

NSRC Workshop

Examples of Symmetric Ciphers

DES - 56 bit key length

3DES - effective key length 112 bits

RC4 - 128 bits

AES (Advanced Encryption Standard) - 128 to
256 bit key length

Blowfish - 128 bits, optimized for fast
operation on 32-bit microprocessors

NSRC Workshop

Properties of Symmetric Ciphers

 Provides confidentiality: infeasible to decrypt data
without knowing the secret key K

 Provides integrity: a small change to the ciphertext
will cause it to decrypt to garbage

 Provides authenticity: if I can decrypt the data with
my key K, I know it must have been encrypted by
someone who knows K

 Fast to encrypt and decrypt, suitable for large
volumes of data

NSRC Workshop

Attacks on Symmetric Ciphers

 Good ciphers resist attacks on the algorithm; brute-
force attack is directly related to the key length.

 Current recommendation is a key length of 90+ bits,
for data protection of 20 years.*

 Relies entirely on secrecy of the key. How can you
distribute it securely to your peer without it being
intercepted by an attacker?

 Use a hash to convert a passphrase into a value
suitable for a key (passphrase easier to remember)

*See http://www.keylength.com/ for a collection of recommendations

NSRC Workshop

3. Diffie-Hellman key
exchange

Two parties agree on the same key - but a
sniffer cannot derive it

f(r1)

f(r2)
f(r1r2) f(r1r2)

random
r1

random
r2

?

NSRC Workshop

Properties of Diffie-Hellman

One of the first asymmetric cryptosystems - from
1976

Used for generating temporary keys ("session keys")
which are discarded after use

A sniffer who sees all the traffic still cannot work out
what key has been agreed upon

Security depends on the number of bits, and on truly
random numbers being chosen

(reasonable minimum: "DH group 2", 1024 bits)

NSRC Workshop

Does Diffie-Hellman solve the key
distribution problem?

Unfortunately not :-(

An active attacker can intercept traffic and
perform key exchange with either or both
sides: a man-in-the-middle attack

In short: you don't know who you're talking to

NSRC Workshop

4. Public key cipher

clear
text

clear
textk1

(public key)

k2

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it.

This is a big deal!

NSRC Workshop

Properties of Public Key Ciphers

The keys are mathematically related

Easy to convert private key into public key

Infeasible to convert public key into private key

You can safely post your public key anywhere!!
(That's why it's called "public")

Can provide confidentiality: encrypt with public
key, decrypt with private key

Can provide authenticity: encrypt with private
key, decrypt with public key

NSRC Workshop

Properties of Public Key Ciphers

Mathematical attacks, not just brute force

512-bit RSA broken

1024-bit RSA may be insecure against highly-
resourced opponents

2048-bit is recommended for good security

MUCH slower than symmetric ciphers (like,
1000 or 10,000 times slower)

Hence are combined with symmetric ciphers to
build a practical system

NSRC Workshop

Example application: gpg

gpg lets you:

generate a public/private key pair

encrypt messages with any public key, and/or

sign messages with your private key

Used for sending encrypted E-mail, verifying
integrity of software packages, etc

NSRC Workshop

Use for authentication

If you have my public key, I can prove to you
that I own the corresponding private key
(without sending it to you)

My public key is therefore a form of identity

Similarly, you can prove your identity to me

Solves the man-in-the-middle problem, as long
as we both know each other's public keys

If not, we can use a third party - a Certificate
Authority - to confirm identity of key owner

NSRC Workshop

Example: ssh with private key auth

A simple way to get rid of passwords entirely!

Generate an ssh key pair (just once)

Keep the private key safe - encrypt it with a
passphrase

Install the public key on each server you want
to login to

When you login, you use the passphrase to
decrypt ("unlock") your private key locally - it
never gets sent to the remote system

NSRC Workshop

Proving identities with ssh keys

Server's public key
~/.ssh/known_hosts

User's public key
~/.ssh/authorized_keys

User's private+public key
~/.ssh/id_rsa
~/.ssh/id_rsa.pub

Server's private+public key
/etc/ssh/ssh_host_rsa_key
.../ssh_host_rsa_key.pub

CLIENT SERVER

(ssh has become popular partly because it doesn't use certificates)

NSRC Workshop

Man-in-the-middle and ssh

How does the server know it's really me?

Because my public key is in ~/.ssh/authorized_keys

How did it get there? Trusted person put it there

How do I know the server is really them?

The server's public key is in ~/.ssh/known_hosts

How does it get there? I could do it manually. If not,
ssh prompts me to install it the first time I connect

This works fine, as long as a man-in-the-middle
attack is not taking place at the time!

NSRC Workshop

Exercise

Create ssh public/private key pair (RSA, 2048
bits)

Copy the public key onto your Unix server PC

Use your private key to login without password

NSRC Workshop

Discussion

What are the pros and cons of this approach,
compared to passwords?

NSRC Workshop

WARNING!

This is the most basic introduction to crypto

DON'T try to write your own cryptographic tools
- there are many pitfalls

Look at what happened with WEP

DO use widely-used and reviewed tools: they
are written by people who understand the
maths and the possible weaknesses

NSRC Workshop

And don't forget the human element

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

