

## **Systems Administration**

Introduction to Virtualization

110110101111100011010101000111010





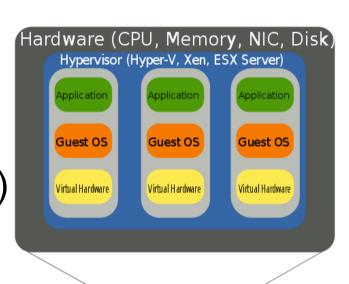
## **Objectives**

- To revise the core concepts
- To ensure we are using the same terminology

#### What is it?

- Virtualization -- the abstraction of the a resource from the actual physical instance of that resource.
- What Computing/Network resources can be virtualized?
  - Virtually anything! :)

## **Anything?**


- In the context of this course. We're interested in virtualization along two dimensions:
  - Services
  - Hosts

#### Resource/Service virtualization

- Examples:
  - Load-balancers
  - DNS Based GLB
  - HTTP(S) Virtual Hosting
  - MX records
  - Virtual Switches
  - Virtual Routers
  - Virtual Firewalls

#### **Host Virtualization**

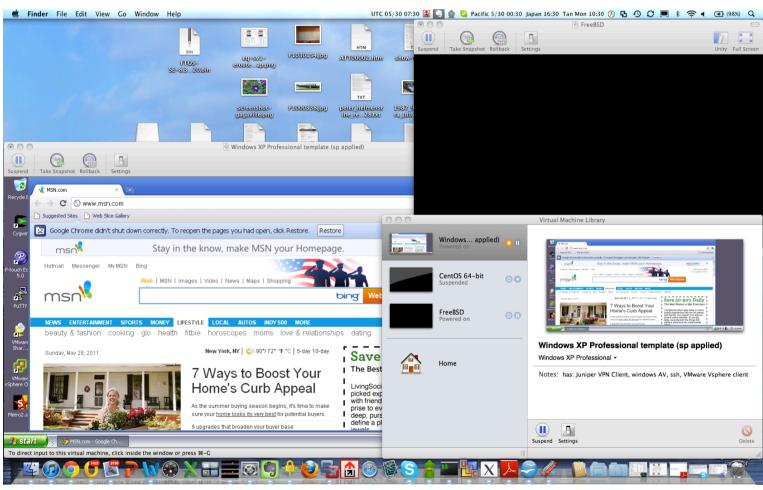
- Examples
  - Vmware
  - Virtual-Box (used in class)
  - KVM
  - XEN
  - FreeBSD and Linux Jails
  - Windows Hyper-V
  - Solaris Zones





## What problem are we attempting to solve with host virtualization.

- Problem 1 Idle capacity.
  - Most of the machines in your datacenter are idle most of the time.
  - Capacity you're not using:
    - Cost money up front
    - Cost money to operate
    - Reduces you return on capital
  - Packing discreet systems into a smaller number of servers provides savings along virtually every dimension.


#### **Problems - Continued**

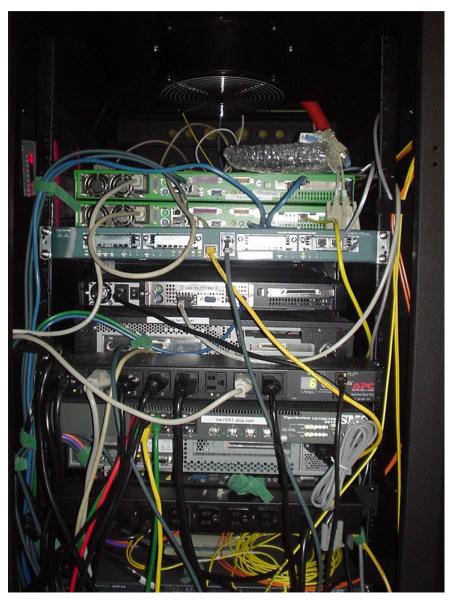
- Problem 2 Provisioning
  - Spinning up a new service involves:
    - Acquiring the hardware
    - Building the server
    - Integration with existing services
  - With virtualization we're aiming to short-circuit that
    - Capacity is a resource
    - Machine instances my be cloned or provisioned from common basic images
    - Resources are purchased in bulk and assigned to applications as necessary

#### **Problems - Continued**

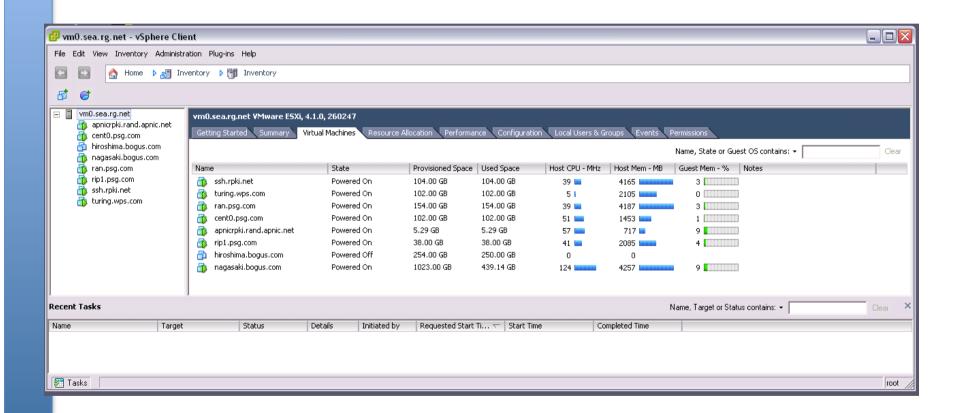
- Problem 3 Hardware abstraction
  - Operating systems, servers, and applications evolve at different rates.
  - Providing a common set of infrastructure resources means, virtualized systems are portable across servers
  - Hardware failure can more easily be managed.

## Examples – Desktop Virtualization

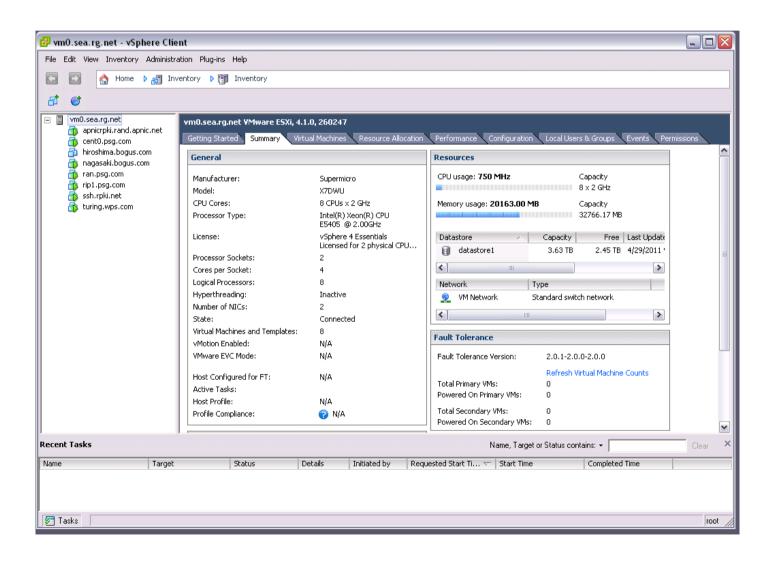



## **Desktop Virtualization**

- Uses
  - Prototyping services or applications before deployment
  - Utilities that don't run on your operating system
  - Isolation of sandbox environments from your desktop
  - Maintaining multiple versions of an environment for support purposes.
  - Staying familiar with unix while running windows (consider compared to the alternative (dual-booting)
- Issues
  - Emulating multiple computers on your laptop/desktop is somewhat resource intensive
- Vmware player and VirtualBox are free.
  - <a href="http://www.virtualbox.org/wiki/Downloads">http://www.virtualbox.org/wiki/Downloads</a>
  - http://downloads.vmware.com/d/info/desktop\_downloads/vmware\_player/3\_0?
     ie=UTF-8&q=vmwareplayer


#### VirtualBox Extensions

- VMWare has similar "VMWare Guest Tools"
- These are extra drivers installed in the guest to support added functionality from within the VM
- VirtualBox Extension Pack adds:
  - USB 2.0 Support
  - RDP Support (remote desktop)
  - RDP Remote Media via local USB
  - PXE Boot Support


## **Examples – Server Virtualization**

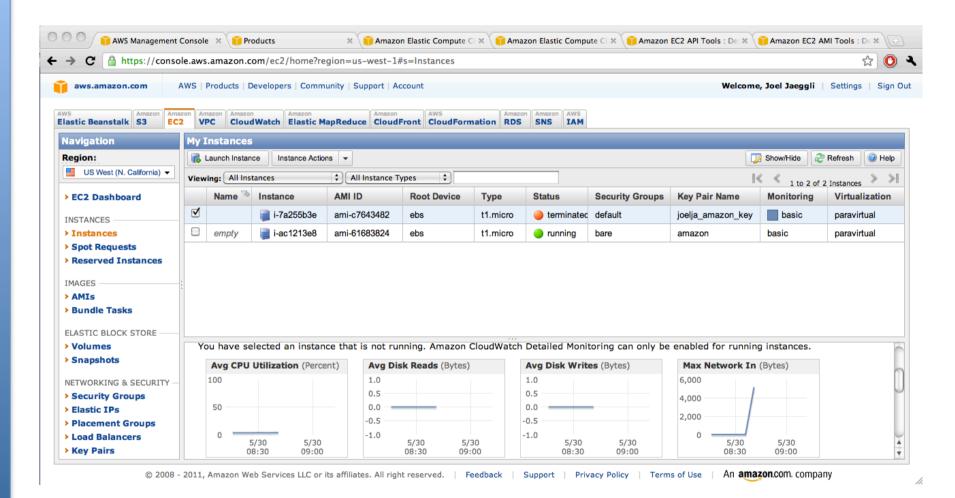


#### **Server Virtualization - Continued**



#### **Server Virtualization**




# Virtualized Servers as a Service (Amazon Web Services)

 Much as colocated servers, are available from a hosting provider, virtual servers are also available.

#### Model is:

- You pay for what you use.
- Flexibility, need fewer servers today then you used, yesterday.
- Leverage other amazon tools (storage/mapreduce/load-balancing/payments etc)

#### **AWS**



## **AWS Steps**

- Select availability zone
- Launch new instance
- Select appropiate ami
- Associate with ssh key
- Launch instance
- Add ip
- SSH into new machine instance.
- t1-micro-instances run \$54 a year + bandwidth

## Try it for free...

- Free tier for the first Calender year is (per month):
  - 750 hours of EC2 running Linux/Unix Micro instance usage
  - 750 hours of Elastic Load Balancing plus 15 GB data processing
  - 10 GB of Amazon Elastic Block Storage (EBS) plus 1 million IOs, 1 GB snapshot storage, 10,000 snapshot Get Requests and 1,000 snapshot Put Requests
  - 15 GB of bandwidth in and 15 GB of bandwidth out aggregated across all AWS services

#### **AWS - Continued**

- For provisioning purposes cli interaction is possible:
  - http://aws.amazon.com/developertools/351
- Along with tools to support the provisioning and destruction of virtual machines.

## Provisioning and management

- Is the glue that makes virtualization usable
- In commercial virtualization environments the provisioning/ management toolkits represent the bulk of the licensing cost (VMware) and the secret sauce (VMotion, disaster recovery, backup, etc)
- One end of the spectrum:
  - XEN tools a collection of perl scripts for spinning <a href="http://www.xen-tools.org/software/xen-tools/">http://www.xen-tools.org/software/xen-tools/</a>
  - KVM tools <a href="http://www.linux-kvm.org/page/Management\_Tools">http://www.linux-kvm.org/page/Management\_Tools</a>
- The Other:
  - Rightscale -<a href="http://www.rightscale.com/products/advantages/managing-systems-not-servers.php">http://www.rightscale.com/products/advantages/managing-systems-not-servers.php</a>

## **Supporting Technology**

- NIC teaming or Link aggregation
- Network attached storage and network centric filesystems
  - Example NFS
  - Hadoopfs
- Distributed databases
  - Example mysql cluster
  - OracleRAC

#### **QEMU-KVM**

- Qemu Emulator the foundation of a number of virtualization products (including VirtualBox)
- Emulates the Entire Machine Environment
  - BIOS
  - CPU(s) SMP-capable
  - IDE Controller
  - NICs, many types
  - Graphics
  - USB, Sound, Etc.
- qemu-img used to generate Virtual Disks
  - supports RAW disks, sparse disks, copy-on-write, and VMDK

## **QEMU-KVM**

- Why Qemu and not VMWare
  - 1) free open-source software
  - 2) supported by Redhat
  - 3) lots of features
  - 4) lots of support tools in development
- Why NOT QEMU-KVM
  - 1) documentation can be missing
  - 2) some features are buggy

# KVM http://www.linux-kvm.org

- KVM (Kernel Virtual Machine)
- Kernel modules for accelerating Virtualization
- Also provides additional services and I/O functionality
- Fully Integrated with current QEMU-KVM Distributions
- CPU-Specific, i.e. "kvm\_intel" or "kvm\_amd"
- % cat /proc/cpu | egrep 'vmx|svm'
- NOTE: Intel VM Extensions may or may not be enabled in your BIOS by default. Check this before you install a Hypervisor.

## **QEMU-KVM**

- Can run in a number of display modes:
  - "SDL" VGA Graphics
  - curses" text graphics
  - VNC remote viewing
- Many Network NIC options
  - default is an internal DHCP with NO ICMP support
  - bridged mode support by "virtio" and "tap" interfaces

## **QEMU Examples**

qemu -hda /vms/myimg -cdrom /isos/ub10.iso -m 512 qemu -hda img1 -hdb img2 -hdc img3 qemu -hda qemu linux.img \
-net nic,vlan=0 -net tap,vlan=0,ifname=tap0 qemu -hda img.qcow2 -m 512 -daemonize -vnc :5

NOTE: the cdrom device can be an ISO file within the Host filesystem, or the Host CDROM drive itself

## qemu-img

- qemu-img is the tool used to generate qemu virtual disks
- qcow2 format
  - sparse disk storage
  - copy-on-write (c.o.w.), a.k.a. "snap-shot" support
  - copy-on-write: means freezing a disk image, and using a new file to hold any further writes to that disk. In this way the original disk image is preserved. To roll-back, throw away new file.
- Cabable of reading/converting VirtualBox and VMWare Disks
- Examples:
  - qemu-img create myhd.qcow2 6G qemu-img convert old.vmdk -O qcow2 newimg

### The Qemu Monitor

http://en.wikibooks.org/wiki/QEMU/Monitor

- builtin control console used to jump out of the guest OS and perform operations on the VM
- access with CTRL-ALT-1/CTRL-ALT-2
   (Mac uses CTRL-OPT-1/CTRL-OPT-2)
- operations: stop, cont, system\_powerdown, change, usb\_add, vnc, etc.
- migration: live migration from one site to another
   On site B: % qemu -hda myimg -incoming tcp:0:4444
   On site A: (in monitor) migrate -b tcp:hostB:4444

## virsh/virt-manager

- libvirt toolkit API used to interface with the qemu-kvm (and other vm platforms, xen, etc.)
- provides a uniform interface for controlling VMs
- provides a more consistent management console
- requires user added to groups: kvm, libvirtd
- Examples:

root/system-level: virsh -c qemu:///system

user/sessions: virsh -c qemu:///session

virsh# list -all

virt-manager: GUI tool for building and controlling VMs

#### Virtualization - Issues

- "All your eggs in one basket" a poorly implemented virtual environment can create a large single point of failure
- Virtualization does not magically manufacture additional resources
- High-performance often requires dedicated hardware, ex. 10GB networking, massive Database I/O systems
- Sometimes the virtualized environment does not have all the features of the real one

## Virtualization - Summary

- Useful for creating and testing new OS's
- Excellent for creating a dual-head, fully redundant, highly-available set of services with live-migration for failover
- Considerable savings on physical resources: heating, cooling, rack space, etc.
- Copy-On-Write filesystems and Snapshots are useful as for de-duplication and as point-in-time versions of the OS
- Significantly reduces deployment time
- Provides a standard environment for services