Network Monitoring and Management

Tutorial: APNIC 34

These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) as part of the ICANN, ISOC and NSRC Registry Operations Curriculum.
What we’ll show and talk about

1. Network Monitoring and Management overview
 - Challenges, concepts, motivations

2. Presentation of protocols, services, tools & techniques
 - **SNMP & Cacti**: Data collection and graphing
 - **Syslog & syslog-ng + Swatch**:
 Remote logging, log collection, parsing and alerting
 - **Nagios**: System & Service availability, trend reporting, alarm
 - **RANCID**: Configuration management
 - **SmokePing**: Latency monitoring
 - **NetFlow + NFSen**: Traffic sampling, collection and graphing
 - **Netdot**: Network discovery, inventory management, IP address management & provisioning of the above tools
Different Types of Monitoring

Interactive diagnostics vs automated
• Interactive: ping, traceroute, tcpdump, …
• Usually as an initial investigation of the cause of a problem
• “Drill down”

Active vs passive
• Active, or probing, using ICMP, TCP/UDP, SNMP
• Passive using syslog, netflow, snmp
• Both are used
• Automated monitoring of these resources, to implement alerting & automatic creation of service tickets
Network Management Details

We Monitor

• System & Services
 – Available, reachable

• Resources
 – Expansion planning, maintain availability

• Performance
 – Round-trip-time, throughput

• Changes and configurations
 – Documentation, revision control, logging
Network Management Details

We Keep Track Of

• **Statistics**
 - For purposes of accounting and metering
 - Capacity planning

• **Faults**
 - Troubleshooting issues and tracking their history
 - Equipment failure
 - Abuse / Attacks
 - Misconfiguration

• Ticketing systems are good at this
• Help Desks are a useful to critical component
A network in operation needs to be monitored in order to:

- Deliver projected SLAs (Service Level Agreements)
- SLAs depend on policy
 ➔ What does your management expect?
 ➔ What do your users expect?
 ➔ What do your customers expect?
 ➔ What does the rest of the Internet expect?
- What’s good enough? 99.999% Uptime?
 ➔ There's no such thing as 100% uptime (as we’ll see)
“Uptime” Expectations

What does it take to deliver 99.9 % uptime?

30.5 days x 24 hours = 732 hours a month
(732 – (732 x .999)) x 60 = 44 minutes
only 44 minutes of downtime a month!

Need to shutdown 1 hour / week?

(732 – 4) / 732 x 100 = 99.4 %

Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

How is availability measured?

In the core? End-to-end? From the Internet?
What is normal for your network?

If you’ve never measured or monitored your network, you will need to know things like:

- Typical load on links
- Jitter between endpoints
- Typical percent usage of resources
- Typical amounts of “noise”:
 - Network scans
 - Dropped data
 - Reported errors or failures
Why do all this?

Know when to upgrade
- Is your bandwidth usage too high?
- Where is your traffic going?
- Do you need to get a faster line, or more providers?
- Is the equipment too old?

Keep an audit trace of changes
- Record all changes
- Makes it easier to find cause of problems due to upgrades and configuration changes

Keep a history of your network operations
- Using a ticket system lets you keep a history of events.
- Allows you to defend yourself and verify what happened
Why network management?

Accounting
- Track usage of resources
- Bill customers according to usage

Know when you have problems
- Stay ahead of your users! Makes you look good.
- Monitoring software can generate tickets and automatically notify staff of issues.

Trends
- All of this information can be used to view trends across your network.
- This is part of baselining, capacity planning and attack detection.
• Trends and automation allow you to know when you are under attack.
• The tools in use can help you to mitigate attacks:
 – Flows across network interfaces
 – Load on specific servers and/or services
 – Multiple service failures
<table>
<thead>
<tr>
<th>Performance</th>
<th>Change Mgmt</th>
<th>Net Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cricket</td>
<td>Mercurial</td>
<td>Big Brother</td>
</tr>
<tr>
<td>IFPFM</td>
<td>Rancid* (routers)</td>
<td>Big Sister</td>
</tr>
<tr>
<td>flowc</td>
<td>CVS*</td>
<td>Cacti*</td>
</tr>
<tr>
<td>mrtg*</td>
<td>Subversion*</td>
<td>Hyperic</td>
</tr>
<tr>
<td>NetFlow*</td>
<td>git*</td>
<td>Munin</td>
</tr>
<tr>
<td>NfSen*</td>
<td></td>
<td>Nagios*</td>
</tr>
<tr>
<td>ntop</td>
<td></td>
<td>OpenNMS*</td>
</tr>
<tr>
<td>perfSONAR</td>
<td></td>
<td>Sysmon</td>
</tr>
<tr>
<td>pmacct</td>
<td></td>
<td>Zabbix</td>
</tr>
<tr>
<td>rrdtool*</td>
<td>Security/NIDS</td>
<td></td>
</tr>
<tr>
<td>SmokePing*</td>
<td>Nessus</td>
<td></td>
</tr>
<tr>
<td>Ticketing</td>
<td>OSSEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prelude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samhain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Untangle</td>
<td></td>
</tr>
<tr>
<td>Logging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swatch*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>syslog/rsyslog*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tenshi*</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPplan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netdisco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netdot*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rack Table</td>
<td></td>
</tr>
<tr>
<td>Protocols/Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNMP*, Perl, ping</td>
<td></td>
</tr>
</tbody>
</table>
Questions?
Demonstration of Tools

• SNMP
• Cacti
• Logging (syslog-ng / swatch)
• Nagios
• RANCID
• Smokeping
• NetFlow / NfSen
• Netdot
What is SNMP?

SNMP – Simple Network Management Protocol
- Industry standard, hundreds of tools exist to exploit it
- Present on any decent network equipment

Query – response based: **GET / SET**
- GET is mostly used for monitoring

Tree hierarchy
- Query for ”Object Identifiers” (OIDs)

Concept of MIBs (Management Information Base)
- Standard and vendor-specific (Enterprise)
What is SNMP

Typical queries
- Bytes In/Out on an interface, errors
- CPU load
- Uptime
- Temperature or other vendor specific OIDs

For hosts (servers or workstations)
- Disk space
- Installed software
- Running processes
- ...

Windows and UNIX have SNMP agents
How does it work?

Basic commands

- **GET** (manager -> agent)
 - Query for a value

- **GET-NEXT** (manager -> agent)
 - Get next value (list of values for a table)

- **GET-RESPONSE** (agent -> manager)
 - Response to GET/SET, or error

- **SET** (manager -> agent)
 - Set a value, or perform action

- **TRAP** (agent -> manager)
 - Spontaneous notification from equipment (line down, temperature above threshold, ...)
Demonstration of Tools

- SNMP
- **Cacti**
- Logging (syslog-ng / swatch)
- Nagios
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
A tool to monitor, store and present network and system/server statistics

Designed around RRDTool with a special emphasis on the graphical interface

Almost all of Cacti's functionality can be configured via the Web.

You can find Cacti here:

http://www.cacti.net/
Cacti: Uses RRDtool, PHP and stores data in MySQL. It supports the use of SNMP and graphics with MRTG.

“Cacti is a complete frontend to RRDTool, it stores all of the necessary information to create graphs and populate them with data in a MySQL database. The frontend is completely PHP driven. Along with being able to maintain Graphs, Data Sources, and Round Robin Archives in a database, cacti handles the data gathering. There is also SNMP support for those used to creating traffic graphs with MRTG.”
Initial Graphs

Gateway Router Group 1 - Traffic - Et0/0
- Inbound: Current 14.17 k, Average 18.78 k, Maximum 18.51 k
- Outbound: Current 15.13 k, Average 17.66 k, Maximum 16.37 k

Gateway Router Group 1 - Traffic - Et0/1
- Inbound: Current 7.85 k, Average 7.95 k, Maximum 8.00 k
- Outbound: Current 6.78 k, Average 7.01 k, Maximum 7.31 k
Over time you’ll see tendencies
Demonstration of Tools

- SNMP
- Cacti
- **Logging (syslog-ng / swatch)**
- Nagios
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
Log Management

- Centralize and consolidate log files
- Send all log messages from your routers, switches and servers to a single node – a log server.
- All network hardware and UNIX/Linux servers can be monitored using some version of syslog.
- Windows can, also, use syslog with extra tools.
- Save a copy of the logs locally, but, also, save them to a central log server for security and ease of inspection
- Watch your log files:
 - It’s not practical to do this manually
#Syslog basics

Uses UDP protocol, port 514

Syslog messages have two attributes (in addition to the message itself):

<table>
<thead>
<tr>
<th>Facility</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth</td>
<td>Emergency (0)</td>
</tr>
<tr>
<td>Authpriv</td>
<td>Alert (1)</td>
</tr>
<tr>
<td>Console</td>
<td>Critical (2)</td>
</tr>
<tr>
<td>Cron</td>
<td>Error (3)</td>
</tr>
<tr>
<td>Daemon</td>
<td>Warning (4)</td>
</tr>
<tr>
<td>Ftp</td>
<td>Notice (5)</td>
</tr>
<tr>
<td>Kern</td>
<td>Info (6)</td>
</tr>
<tr>
<td>Lpr</td>
<td>Debug (7)</td>
</tr>
<tr>
<td>Local0 ...Local7</td>
<td></td>
</tr>
</tbody>
</table>
Log Management and Monitoring

On your routers and switches

ep 1 04:40:11.788 INDIA: %SEC-6-IPACCESSLOGP: list 100 denied tcp 79.210.84.154(2167) -> 169.223.192.85(6662), 1 packet

ep 1 04:42:35.270 INDIA: %SYS-5-CONFIG_I: Configured from console by pr on vty0 (203.200.80.75)

CI-3-TEMP: Overtemperature warning

ar 1 00:05:51.443: %LINK-3-UPDOWN: Interface Serial1, changed state to down

And, on your servers

ug 31 17:53:12 ubuntu nagios3: Caught SIGTERM, shutting down...

ug 31 19:19:36 ubuntu sshd[16404]: Failed password for root from 169.223.1.130 port 2039 ssh2
Centralized logging
Demonstration of Tools

- SNMP
- Cacti
- Logging (syslog-ng / swatch)
- **Nagios**
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
Introduction

- Possibly the most used open source network monitoring software.
- Has a web interface.
 - Uses CGIs written in C for faster response and scalability.
- Can support up to thousands of devices and services.
Plugins

Plugins are used to verify services and devices:

- Nagios architecture is simple enough that writing new plugins is fairly easy in the language of your choice.
- There are many, many plugins available (thousands).
 - http://exchange.nagios.org/
 - http://nagiosplugins.org/
Features

- Configuration done in text files, based on templates.
- Nagios reads its configuration from a directory. You determine how to divide your configuration files.
- Uses parallel checking and forking for scalability
Utilizes topology to determine dependencies.

- Differentiates between what is *down* vs. what is *unreachable*. Avoids running unnecessary checks and sending redundant alarms.

Allows you to define how to send notifications based on combinations of:

- Contacts and lists of contacts
- Devices and groups of devices
- Services and groups of services
- Defined hours by persons or groups.
- The state of a service.
Network viewpoint
Parents and configuration

RTR
define host {
 use
generic-host
 host_name rtr
 alias Gateway Router
 address 10.10.0.254
}

SW
define host {
 use
generic-host
 host_name sw
 alias Backbone Switch
 address 10.10.0.253
 parents rtr
}

RTR3
define host {
 use
generic-host
 host_name rtr3
 alias router 3
 address 10.10.3.254
 parents sw
}
Demonstration of Tools

• SNMP
• Cacti
• Logging (syslog-ng / swatch)
• Nagios
• **RANCID**
• Smokeping
• NetFlow / NfSen
• Netdot
What is RANCID

The "Really Awesome New Cisco config Differ" – Really!

A configuration management tool:
• Keeps track of changes in the configs of your network equipment (Cisco, HP, Juniper, Foundry, etc.)
• Works on routers and switches
What is RANCID?

Automates retrieval of the configurations and archives them

Functions as:

- Backup tool - ”woops, my router burned”
- Audit tool - ”how did this error get in?”
- Blame allocation :) - ”who did it?”

The data is stored in a VCS (Version Control System) – supported are:

- CVS (Concurrent Versions Systems)
- SVN (SubVersion)
How does it work?

Run (manually or automated)

Lookup list of groups

For each device in each list of groups

• Connect to the equipment (telnet, ssh, …)
• Run ”show” commands – config, inventory, …
• Collect, filter/format data
• Retrieve the resulting config files
• CVS check-in the changes
• Generate a diff from the previous version
• E-mail the diff to a mail address (individual or group)
What to use it for

- Track changes in the equipment configuration
- Track changes in the hardware (S/N, modules)
- Track version changes in the OS (IOS, CatOS versions)
- Find out what your colleagues have done without telling you!
- Recover from accidental configuration errors (anyone have stories?)
Demonstration of Tools

- SNMP
- Cacti
- Logging (syslog-ng / swatch)
- Nagios
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
Introduction

- Based on RRDTool (the same author)
- Measures ICMP delay and can measure status of services such as HTTP, DNS, SMTP, SSH, LDAP, etc.
- Define ranges on statistics and generate alarms.
- Written in Perl for portability
- Easy to install harder to configure.
The “Smoke” and the “Pings”
How to Read Smokeping Graphs

- Smokeping sends multiples tests (pings), makes note of RTT, orders these and selects the median.
- The different values of RTT are shown graphically as lighter and darker shades of grey (the “smoke”). This conveys the idea of variable round trip times or jitter.
- The number of lost packets (if any) changes the color of the horizontal line across the graph.
Demonstration of Tools

- SNMP
- Cacti
- Logging (syslog-ng / swatch)
- Nagios
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
Network Flows (NetFlow)

- Packets or frames that have a common attribute.
- Creation and expiration policy – what conditions start and stop a flow.
- Counters – packets, bytes, time.
- Routing information – AS, network mask, interfaces.
Network Flows

- Unidirectional or bidirectional.
- Bidirectional flows can contain other information such as round trip time, TCP behavior.
- Application flows look past the headers to classify packets by their contents.
- Aggregated flows – flows of flows.
Working with Flows

- Generate the flows from device (usually a router)
- Export flows from the device to collector
 - Configure version of flows
 - Sampling rates
- Collect the flows
 - Tools to Collect Flows - Flow-tools
 - NfSen
- Analyze them
 - More tools available, can write your own
What is NfSen

• Is a graphical front end to nfdump
• NfDump tools collect and process netflow data on the command line
• NfSEN allows you to:
 – Easily navigate through the netflow data.
 – Process the netflow data within the specified time span.
 – Create history as well as continuous profiles.
 – Set alerts, based on various conditions.
 – Write your own plugins to process netflow data on a regular interval.
Demonstration of Tools

- SNMP
- Cacti
- Logging (syslog-ng / swatch)
- Nagios
- RANCID
- Smokeping
- NetFlow / NfSen
- Netdot
Problems with documentation

In most cases:

– Lack of clear procedures and methods
– Dispersion
– Lack of structure
– Lack of correlation
– Lack of tools… or, too many tools
– Lack of time and human resources
Netdot: \{net.\} NETwork DOcumentation Tool

- Started in 2002. Required by the University of Oregon Network Services and NERO (http://www.nero.net)
- Nothing equivalent available as Open Source
- Started as something much simpler
- Quickly it became apparent that centralizing and correlating information was critical:
 - Topology
 - Cable plant
 - IP and Mac addresses
 - DNS, DHCP, etc.
Netdot: Design goals

• Utilize components (don’t reinvent the wheel)
 – There are Open Source packages that help to resolve many Network Management problems.

• Independent of the RDBMS using abstraction (http://www.masonhq.com)
 – MySQL, Postgres, etc.

• Use of Object Relations Mapper tools (ORM)

• Minimize the number of programming languages.
 – Perl and Javascript

• Low impact graphical interface.
Include functionality of other network documentation tools such as IPplan and Netdisco.

Core functionality includes:

- Discovery of network interfaces via SNMP
- Layer 2 topology discovery and graphics using:
 - CDP/LLDP
 - Spanning Tree protocol
 - Switches forwarding tables
 - Router point-to-point subnets
- IPv4 and IPv6 address management (IPAM)
 - Address space visualization
 - DNS and DHCP configuration management
 - IP and Mac address correlation
Functionality cont.

- Cable plants (sites, fibre, copper, closes, circuits)
- Contacts (departments, providers, vendors, etc.)
- Export of data for various tools (Nagios, Sysmon, RANCID, Cacti, etc.)
 - For example, automate Cacti configuration
 - I.E., how to automate node creation in Cacti
- User access-level: admin, operator, user
- Ability to draw pretty pictures of your network.
Questions?
A few other tools

iperf, bandwidthd, perSONAR, mtr, nmap, wireshark, tcpdump, …

Network Intrusion Detection (NIDs):

- **SNORT** - a commonly used open source tool:
 http://www.snort.org/

- **Prelude** – Security Information Management System
 https://dev.prelude-technologies.com/

- **Samhain** – Centralized HIDS
 http://la-samhna.de/samhain/

- **Nessus** - scan for vulnerabilities:
 http://www.nessus.org/download/

- OpenVAS