DNSSEC

Part1: DNSSEC: Why and How

DNSSEC Tutorial

AfriNIC-17
Khartoum, Nov 2012

aalain@afrinic.net
DNS Architecture

As ISP

As ‘friend’

Cache server

As DNS provider

Provisioning

DNS Protocol

Registry DB

Registrars/Registrants

primary

secondary
Why DNSSEC

• Good security is multi-layered
 – Multiple defense rings in physical secured systems
 – Multiple ‘layers’ in the networking world

• DNS infrastructure
 – Providing DNSSEC to raise the barrier for DNS based attacks
 – Provides a security ‘ring’ around many systems and applications
The Problem

• DNS data published by the registry is being replaced on its path between the “server” and the “client”.

• This can happen in multiple places in the DNS architecture
 – DNS uses UDP, much easier to spoof
 – Some places are more vulnerable to attacks then others
 – Vulnerabilities in DNS software make attacks easier
 (and there will always be software vulnerabilities)

• Deficiencies in the DNS protocol and in common deployment create some weaknesses
 – Query ID is 16 bits (0-65535)
 – Lack of UDP packet Source Port (16 bits) and Query ID randomization in some deployments
The Problem (cont'd)

• Kaminsky Attacks published in 07/2008 showed how these weaknesses can be exploited for cache poisoning attacks
 – Panic (although all of this is known for a long !!!)
 – Workarounds to contain the situation
 • Source port/Query ID randomization
 • Recommendations for DNS deployment
 http://www.kb.cert.org/vuls/id/800113
 – The Solution ????
 • DNSSEC

And so, DNSSEC is now known as a critical component of DNS Security
Kaminsky attack

1. IP for www.12345678.bankofsteve.com?

2a. QID=1000
 IP for www.12345678.bankofsteve.com?

2b. QID=1000
 IP for www.12345678.bankofsteve.com?
 referral to ns1.bankofsteve.com

3. QID=1000
 referral to ns1.bankofsteve.com

4. QID=1001
 IP for www.12345678.bankofsteve.com?

5. QID=1001
 www.12345678.bankofsteve.com A?
 (empty)
 bankofsteve.com NS ns1.bankofsteve.com
 ns1.bankofsteve.com A 10.1.1.1

6. IP for www.12345678.bankofsteve.com?

7. Answer = (doesn’t matter)
 QID=1000 - mismatch
 QID=1001 - success!
 QID=1002 - mismatch

8. Answer = (doesn’t matter)

9. QID=XXXX
 www.12345678.bankofsteve.com A?
 (empty)
 bankofsteve.com NS ns1.bankofsteve.com
 ns1.bankofsteve.com A 10.9.9.98

10. Answer = (doesn’t matter)

The Internet

Root/GTLD Servers

ns1.bankofsteve.com

BankOfSteve.com network

ns1.badguy.com

Authoritative for: badguy.com and bankofsteve.com

Bad guy’s network

victim nameserver

Bad guy client
Kaminsky attack (con't)

DNS BailiWicked Domain Attack

This exploit attacks a fairly ubiquitous flaw in DNS implementations which Dan Kaminsky found and disclosed ~Jul 2008. This exploit replaces the target domains nameserver entries in a vulnerable DNS cache server. This attack works by sending random hostname queries to the target DNS server coupled with spoofed replies to those queries from the authoritative nameservers for that domain. Eventually, a guessed ID will match, the spoofed packet will get accepted, and the nameserver entries for the target domain will be replaced by the server specified in the NEWDNS option of this exploit.

Rank

Normal

Authors

lruid < druid [at] caugh3.org >
hdm < hdm [at] metasploit.com >
Cedric Blancher < sid [at] rstack.org >

Vulnerability References

CVE-2008-1447
OSVDB-46776
US-CERT-VU-800113
DNS Vulnerabilities

- Registrars
- Registrants

- Registry DB

- Inter-server communication
- Server compromise
- Cache Poisoning
- Cache-Stub resolver communication

Provisioning
DNS Protocol
Example: Unauthorized mail scanning

Subject: tenure

Where?

There!

Astrophysics Mail Server

Central Admin Mail Server

DNS
Example: Unauthorized mail scanning

Subject: tenure

Astrophysics Mail Server

Central Admin Mail Server

DNS

Bad Guy

Where?

Elsewhere
Where Does DNSSEC Come In?

- DNSSEC secures the name to address mapping
 - Transport and Application security are just other layers.
Authenticity and Integrity

• We want to check authenticity and integrity of DNS data
• Authenticity: Is the data published by the entity we think is authoritative?
• Integrity: Is the data received the same as what was published?
• Public Key cryptography helps to answer these questions
 – use signatures to check both integrity and authenticity of data
 – Verify the authenticity of signatures
DNSSEC properties

• DNSSEC provides message authentication and integrity verification through cryptographic signatures
 – Authentic DNS source
 – No modifications between signing and validation
• It does not provide authorization
• It does not provide confidentiality
DNSSEC protection

Registars
Registrants

Registry DB

'envelope sealed'

'Seal checked'

Provisioning
DNS Protocol

'Seal checked'
DNSSEC hypersummary

• Data authenticity and integrity by signing the Resource Records Sets with private key

• Public DNSKEYs used to verify the RRSIGs

• Children sign their zones with their private key
 – Authenticity of that key established by signature/checksum by the parent (DS)

• Ideal case: one public DNSKEY distributed
DNSSEC secondary benefits

• DNSSEC provides an “independent” trust path
 – The person administering “https” is most probably a different from person from the one that does “DNSSEC”
 – The chains of trust are most probably different
 – See acmqueue.org article: “Is Hierarchical Public-Key Certification the Next Target for Hackers?”
More benefits?

• With reasonable confidence perform opportunistic key exchanges
 – SSHFP, IPSECKEY X509 CERTS Resource Records

• With DNSSEC one could use the DNS for a priori negotiation of security requirements.
 – “You can only access this service over a secure channel”
More benefits?

• DNS-based Authentication of Named Entities WG
 http://tools.ietf.org/wg/dane/

 Objective:

Specify mechanisms and techniques that allow Internet applications to establish cryptographically secured communications by using information distributed through DNSSEC for discovering and authenticating public keys which are associated with a service located at a domain name.
Attacks against PKI

Attackers Obtain Valid Cert for Google Domains, Mozilla Moves to Revoke It

by Dennis Fisher

The Kaspersky Lab Security News Service

August 29, 2011, 7:31PM

Update: A certificate authority in the Netherlands issued a valid SSL wildcard certificate for Google to a third party in July, leading to concerns that attackers may have been using the certificate to route sensitive traffic through their own servers, capturing it and compromising user data in the process. The certificate was revoked by the CA, DigiNotar, after the problem came to light Monday and Mozilla and Microsoft both have removed DigiNotar from their lists of trusted root CAs.

The attack appears to have been targeting Gmail users specifically. Some users trying to reach the Gmail servers over HTTPS found that their traffic was being rerouted through servers that shouldn't have been part of the equation. On Monday afternoon, security researcher Moxie Marloinspike checked the signatures on the certificate for the suspicious server, which had been posted to Pastebin and elsewhere on the Web, and found that the certificate was in fact valid. The attack is especially problematic because the certificate is a wildcard cert, meaning it is valid for any of Google's domains that use SSL.

It's not clear who DigiNotar issued the certificate to at this point.
Attacks against PKI (cont.)

Microsoft Revokes Trust in Five DigiNotar Root Certs, Mozilla Drops Trust For Staat der Nederland Certs

The fallout from the DigiNotar compromise continued on Tuesday, as Microsoft said it has now revoked its trust of all five of the certificate authority's root certificates. The update that makes this change is being pushed out to users on all supported versions of Windows. Mozilla also released new versions of Firefox on Tuesday that revoke trust for all of DigiNotar's certificates.

The move by Microsoft effectively makes any certificate that has been issued by DigiNotar untrusted by Internet Explorer and other Windows applications. Any IE user who visits a site that presents a DigiNotar-issued certificate as proof of identity will get an error message telling him that the certificate isn't trusted. Microsoft's change applies to these root certificates from DigiNotar.

Security for Virtualization

Get the right balance between security and performance with our animated video.
A signed zone

[...]

trstech.net. 86400 NS ns.trstech.net.
trstech.net. 86400 NS rip.psg.com.

trstech.net. 86400 RRSIG NS 5 2 86400 20061227191027 (20061127191027 33888
 trstech.net.pVlziETr5b3RjBR86rHTdgrJVEkL9QfHoUoR3mepL5wGlH8leJpeZQNjQPZM/AMzcEtiDmlI2RXvpYLxTdBpdg
 ==)

[...]

trstech.net. 86400 DNSKEY 257 3 5
 (AwEAAZrwNevGbMaT+yW9K+XILk6WqN3F1heks/tfUCjAVWLKYHKT5+2GdCC7QW4MA3dwAKbpqv+4NSg/6yLwQz
 BnF6gSRW3PhzIR53u8FdGF3yuYzTOd8HSL04otKZfmXAWnDSJfLY0WkZyycxB+tMWUUWqEYWWhC5aZuTL7kHJndiz
 3) ; key id = 36472

[.....]

trstech.net. 86400 RRSIG DNSKEY 5 2 86400 20061227191027 (20061127191027 33888 trstech.net.
 J82iBTiEZOoheOMigH52SLltXHij9jT12RlepZr9+EAeW/24wjQvkcWLRN1DFYXTbK1V24F9NzkUh5TfeFw==)
[...]

trstech.net. 3600 NSEC aalain.trstech.net. NS SOA MX RRSIG NSEC DNSKEY
trstech.net. 3600 RRSIG NSEC 5 2 3600 20061227191027 (20061127191027 33888 trstech.net.
 TE9+FGO2Yr5fwOu3/uXyW/Ub4M6YobJNhkhhTWW835Ff2qmZrpraFLp5ZNAK200M901uY7XI20O8nvRDv8XXb9Q==)
[...]
Using the DNS to Distribute Keys

• Secured islands make key distribution problematic

• Distributing keys through DNS:
 – Use one trusted key to establish authenticity of other keys
 – Building chains of trust from the root down
 – Parents need to sign the keys of their children

• Only the root key needed in ideal world
 – Parents always delegate security to child
 – ... but it doesn't help to sign if your parent doesn't sign, or isn't signed itself...
Trust Anchors repositories

• Root is signed and receiving DS records from TLDs
 – www.root-dnssec.org

• Incremental deployment of DNSSEC with multiples islands

• Use of Trust Anchors
 – A DNS resource record store that contains SEP keys for one or more zones.
Trust Anchor Repositories...

DLV

DLV: DNSSEC Lookaside Validation

- Alternative method for chain of trust creation and verification in a disjointed signed space (islands of trust)

- DLV functions automatically (if the resolver is configured to do so) by looking up in a preconfigured “lookaside validation” zone

 - no need to fetch a list of anchors
 - ISC Initiative: https://www.isc.org/solutions/dlv
Other DNS security

• We talked about data protection
 – The sealed envelope technology
 – RRSIG, DNSKEY, NSEC and DS RRs

• There is also a transport security component
 – Useful for bilateral communication between machines
 – TSIG or SIG0
TSIG Protection

Registry DB

Registrars
Registrants

AXFR and IXFR

Queries to caching forwarers

Provisioning

DNS Protocol

dynamic updates
Transaction Signature: TSIG

• TSIG (RFC 2845)
 – Authorising dynamic updates and zone transfers
 – Authentication of caching forwarders
 – Independent from other features of DNSSEC

• One-way hash function
 – DNS question or answer and timestamp

• Traffic signed with “shared secret” key

• Used in configuration, **NOT** in zone file
TSIG for Zone Transfers

- Generate secret
- Communicate secret
- Configure servers
- Test
Importance of the Time Stamp

• TSIG/SIG(0) signs a complete DNS request / response with time stamp
 – To prevent replay attacks
 – Currently hardcoded at five minutes

• Operational problems when comparing times
 – Make sure your local time zone is properly defined
 – `date -u` will give UTC time, easy to compare between the two systems
 – Use NTP synchronisation!
Authenticating Servers Using SIG(0)

• Alternatively, it is possible to use SIG(0)
 – Not yet widely used
 – Works well in dynamic update environment

• Public key algorithm
 – Authentication against a public key published in the DNS

• SIG(0) specified in RFC 2931
TSIG Example

Query: AXFR

Slave
SOA ...

Master
SOA ...

Response: Zone

verification
DNSSEC Adoption

http://www.ohmo.to/dnssec/maps/ seen today
Operator Guidance Documentation

<table>
<thead>
<tr>
<th>NIST Special Publication 800-81</th>
<th>Recommendations of the National Institute of Science and Technology, Deployment Guide</th>
<th>NIST</th>
<th>http://csrc.nist.gov/publications/nistpubs/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step-by-Step guides</td>
<td>Guides for signed zone operation</td>
<td>SPARTA, Inc</td>
<td>http://www.dnsssec-tools.org/resources/documentation.html</td>
</tr>
<tr>
<td>DNSSEC Howto</td>
<td>A tutorial in disguise</td>
<td>NLNet Labs</td>
<td>http://www.nlnetlabs.nl/dnssec_howto/</td>
</tr>
</tbody>
</table>

Resources

www.dnssec-deployment.org
Includes monthly newsletter, DNSSEC This Month
DNSSEC Deployment Mailing list
dnssec-deployment-subscribe@shinkuro.com

www.dnssec-tools.org/
www.dnssec.net/
www.isc.org
Internet Systems Consortium – BIND, DLV

www.nlnetlabs.nl
NLnet Labs – NSD, Unbound

www.opendnsssssec.org
DNS visualization tool (http://dnsviz.net/)
Questions?