DNSSEC

Part1: DNSSEC: Why and How

DNSSEC Tutorial

AfriNIC-17 Khartoum, Nov 2012

aalain@afrinic.net

DNS Architecture Registrars/ Registrants As 'friend' secondary As ISP Cache server Registry DB primary client As DNS provider secondary

DNS Protocol

Provisioning

Why DNSSEC

- Good security is multi-layered
 - Multiple defense rings in physical secured systems
 - Multiple 'layers' in the networking world
- DNS infrastructure
 - Providing DNSSEC to raise the barrier for DNS based attacks
 - Provides a security 'ring' around many systems and applications

The Problem

- DNS data published by the registry is being replaced on its path between the "server" and the "client".
- This can happen in multiple places in the DNS architecture
 - DNS uses UDP, much easier to spoof
 - Some places are more vulnerable to attacks then others
 - Vulnerabilities in DNS software make attacks easier (and there will always be software vulnerabilities)
- Deficiencies in the DNS protocol and in common deployment create some weaknesses
 - Query ID is 16 bits (0-65535)
 - Lack of UDP packet Source Port (16 bits) and Query ID randomization in some deployments

The Problem(cont'd)

- Kaminsky Attacks published in 07/2008 showed how these weaknesses can be exploited for cache poisoning attacks
 - Panic (although all of this is known for a long !!!)
 - Workarounds to contain the situation
 - Source port/Query ID randomization
 - Recommendations for DNS deployment http://www.kb.cert.org/vuls/id/800113
 - The Solution ????
 - DNSSEC

And so, DNSSEC is now known as a critical component of DNS Security

Kaminsky attack

Kaminsky attack (con't)

DNS Vulnerabilities

Example: Unauthorized mail scanning

Subject: tenure scanning Astrophysics Central Admin Mail Server Mail Server Where? There! **DNS**

Example: Unauthorized mail scanning

Subject: tenure

Where Does DNSSEC Come In?

- DNSSEC secures the name to address mapping
 - Tranport and Application security are just other layers.

Authenticity and Integrity

- We want to check authenticity and integrity of DNS data
- Authenticity: Is the data published by the entity we think is authoritative?
- Integrity: Is the data received the same as what was published?
- Public Key cryptography helps to answer these questions
 - use signatures to check both integrity and authenticity of data
 - Verify the authenticity of signatures

DNSSEC properties

- DNSSEC provides message authentication and integrity verification through cryptographic signatures
 - Authentic DNS source
 - No modifications between signing and validation
- It does not provide authorization
- It does not provide confidentiality

DNSSEC hypersumary

- Data authenticity and integrity by signing the Resource Records Sets with private key
- Public DNSKEYs used to verify the RRSIGs
- Children sign their zones with their private key
 - Authenticity of that key established by signature/checksum by the parent (DS)
- Ideal case: one public DNSKEY distributed

DNSSEC secondary benefits

- DNSSEC provides an "independent" trust path
 - The person administering "https" is most probably a different from person from the one that does "DNSSEC"
 - The chains of trust are most probably different
 - See acmqueue.org article: "Is Hierarchical Public-Key Certification the Next Target for Hackers?"

More benefits?

- With reasonable confidence perform opportunistic key exchanges
 - SSHFP, IPSECKEY X509 CERTS Resource Records
- With DNSSEC one could use the DNS for a priori negotiation of security requirements.
 - "You can only access this service over a secure channel"

More benefits?

DNS-based Authentication of Named Entities WG

http://tools.ietf.org/wg/dane/

Objective:

Specify mechanisms and techniques that allow Internet applications to establish cryptographically secured communications by using information

distributed through DNSSEC for discovering and authenticating public keys which are associated with a service located at a domain name.

Attacks against PKI

Attacks against PKI(cont.)

A signed zone

```
[...]
trstech.net. 86400 NS
                      ns.trstech.net.
trstech.net. 86400 NS
                      rip.psg.com.
trstech.net. 86400 RRSIG
                           NS 5 2 86400 20061227191027 (20061127191027 33888
    trstech.net.pVlziETr5b3RjBR86rHTdgrJVEkL9QfHoUoR3mepL5wGlH8leJpeZQNjQPZM/AMzcEtiDmli2RXvpYLxTdBpdg
    == )
[....]
trstech.net. 86400 DNSKEY 257 3 5
    (AwEAAZrwNevGbMaT+yW9K+XlLk6WqN3F1heks/tfUCjAVWLKYHKtB5+2GdCC7QW4MA3dwAKbpqv+4NSg/6yLwQz
    BnF6gSRW3PhzIR53u8FdGF3yuYzTOd8HSL04otKZfmXAWnDSJfLY0WkZyycxB+tMWUWgEYWMhC5aZuTL7kHJndiz
    3); key id = 36472
[.....]
                      RRSIG
trstech.net. 86400
                                 DNSKEY 5 2 86400 20061227191027 ( 20061127191027 33888 trstech.net.
J82iBTiEZOoheOMigH52SLtltXHij9jT12RlepZr9+EAeW/24wjJqvkicWLRN1DFYXTbK1V24F9NzkUh5TfeFw==)
[...]
trstech.net. 3600 NSEC
                           aalain.trstech.net. NS SOA MX RRSIG NSEC DNSKEY
trstech.net. 3600 RRSIG
                           NSEC 5 2 3600 20061227191027 (20061127191027 33888 trstech.net.
TE9+FGO2Yr5fwOu3/uXyW/Ub4M6YobJNkhhTWW835Ff2qmZrpraFLp5ZNAK200M901uY7XI20O8nvRDv8XXb9Q==)
[...]
```

Using the DNS to Distribute Keys

- · Secured islands make key distribution problematic
- Distributing keys through DNS:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children
- · Only the root key needed in ideal world
 - Parents always delegate security to child
 - ... but it doesn't help to sign if your parent doesn't sign, or isn't signed itself...

Trust Anchors repositories

- Root is signed and receiving DS records from TLDs
 - www.root-dnssec.org
- Incremental deployment of DNSSEC with multiples islands
- Use of Trust Anchors
 - A DNS resource record store that contains SEP keys for one or more zones.

Trust Anchor Repositories... DLV

DLV: DNSSEC Lookaside Validation

- Alternative method for chain of trust creation and verification in a disjointed signed space (islands of trust)
- DLV functions automatically (if the resolver is configured to do so) by looking up in a preconfigured "lookaside validation" zone
 - no need to fetch a list of anchors
 - ISC Initiative: https://www.isc.org/solutions/dlv

Other DNS security

- We talked about data protection
 - The sealed envelope technology
 - RRSIG, DNSKEY, NSEC and DS RRs
- There is also a transport security component
 - Useful for bilateral communication between machines
 - TSIG or SIG0

Transaction Signature: TSIG

- TSIG (RFC 2845)
 - Authorising dynamic updates and zone transfers
 - Authentication of caching forwarders
 - Independent from other features of DNSSEC
- One-way hash function
 - -DNS question or answer and timestamp
- Traffic signed with "shared secret" key
- Used in configuration, **NOT** in zone file

TSIG for Zone Transfers

- Generate secret
- Communicate secret
- Configure servers
- Test

Importance of the Time Stamp

- TSIG/SIG(0) signs a complete DNS request / response with time stamp
 - To prevent replay attacks
 - Currently hardcoded at five minutes
- Operational problems when comparing times
 - Make sure your local time zone is properly defined
 - date -u will give UTC time, easy to compare between the two systems
 - Use NTP synchronisation!

Authenticating Servers Using SIG(0)

- Alternatively, it is possible to use SIG(0)
 - Not yet widely used
 - Works well in dynamic update environment
- Public key algorithm
 - Authentication against a public key published in the DNS
- SIG(0) specified in RFC 293 I

TSIG Example

DNSSEC Adoption

http://www.ohmo.to/dnssec/maps/ seen today

Operator Guidance Documentation

NIST Special Publication 800- 81	Recommendations of the National Institute of Science and Technology, Deployment Guide	NIST	http://csrc.nist.gov/publicati ons/nistpubs/
RFC 4641	DNSSEC Operational Practices	IETF	http://www.ietf.org/rfc/rfc4 641.txt
Step-by-Step guides	Guides for signed zone operation	SPARTA, Inc	http://www.dnssec- tools.org/resources/docume ntation.html
DNSSEC Howto	A tutorial in disguise	NLNet Labs	http://www.n lnetlabs.nl/dns sec_howto/

RFC4641bis http://tools.ietf.org/wg/dnsop/draft-ietf-dnsop-rfc4641bis/

Resources

www.dnssec-deployment.org

Includes monthly newsletter, DNSSEC This Month

DNSSEC Deployment Mailing list

dnssec-deployment-subscribe@shinkuro.com

www.dnssec-tools.org/

www.dnssec.net/

www.isc.org

Internet Systems Consortium – BIND, DLV

www.nlnetlabs.nl

NLnet Labs - NSD, Unbound

www.opendnsssec.org

DNS visualization tool (http://dnsviz.net/)

Questions?

