

# Network Management & Monitoring



## **Agenda**

#### **Netflow**

- What it is and how it works
- Uses and Applications

#### Flow-tools

- Architectural issues
- Software, tools etc

#### <u>Lab</u>

#### **Network Flows**

- Packets or frames that have a common attribute.
- Creation and expiration policy what conditions start and stop a flow.
- Counters packets, bytes, time.
- Routing information AS, network mask, interfaces.

#### Cisco's Definition of a Flow

#### Unidirectional sequence of packets sharing

- 1. Source IP address
- 2. Destination IP address
- 3. Source port for UDP or TCP, 0 for other protocols
- 4. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
- 5. IP protocol
- 6. Ingress interface (SNMP ifIndex)
- 7. IP Type of Service

#### **Network Flows**

- Unidirectional or bidirectional.
- Bidirectional flows can contain other information such as round trip time, TCP behavior.
- Application flows look past the headers to classify packets by their contents.
- Aggregated flows flows of flows.

## Working with Flows

- Generate the flows from device (usually a router)
- Export flows from the device to collector
  - Configure version of flows
  - Sampling rates
- Collect the flows
  - Tools to Collect Flows Flow-tools
- Analyze them
  - More tools available, can write your own

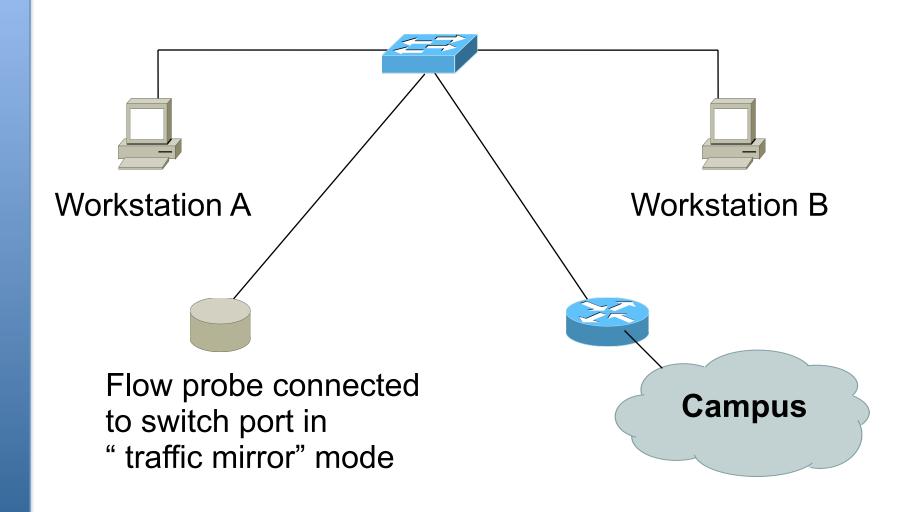
## **Flow Descriptors**

- A Key with more elements will generate more flows.
- Greater number of flows equals:
  - More post processing time to generate reports
  - more memory and CPU requirements for device generating flows
  - More storage needed on the flow processing server
- Depends on application. Traffic engineering vs. intrusion detection.

## Flow Accounting

- Accounting information accumulated with flows.
- Packets, Bytes, Start Time, End Time.
- Network routing information masks and autonomous system number.

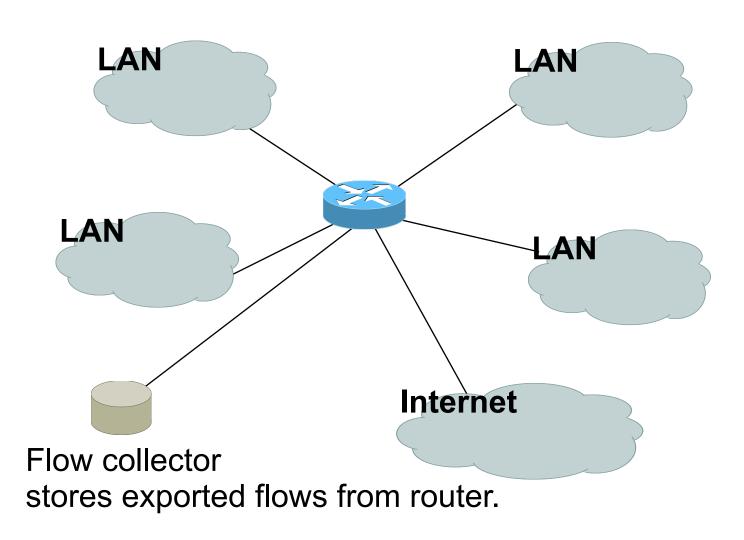
#### Flow Generation/Collection


#### Passive monitor

- A passive monitor (usually a Unix host) receives all data and generates flows.
- Resource intensive

#### Router or other existing network device

- Router or other existing devices like switch, generate flows.
- Sampling is possible
- Nothing new needed


#### **Passive Monitor Collection**



#### **Passive Collector**

- Using passive collection, not all flows in the network will be seen as opposed to collection from the router
- The collector will only see flows from the network point it is connected on
- However this method does relieve the router from processing netflows and exporting them
- Useful on links with only one entry into the network or where only flows from one section of the network are needed

### **Router Collection**



#### **Router Collection**

- With this method, all flows in the network can be observed
- However, more work for the router in processing and exporting the flows
- Optionally, one can choose on which interfaces netflow collection is needed and not activate it on others
- Also, if there is a router on each LAN, netflow can be activated on those routers to reduce the load on the core router

#### Cisco NetFlow

- Unidirectional flows.
- IPv4 unicast and multicast.
- Aggregated and unaggregated.
- Flows exported via UDP.
- Supported on IOS and CatOS platforms.
- Catalyst NetFlow is different implementation.

#### Cisco NetFlow Versions

- 4 Unaggregated types (1,5,6,7).
- 14 Aggregated types (8.x, 9).
- Each version has its own packet format.
- Version 1 does not have sequence numbers
   no way to detect lost flows.
- The "version" defines what type of data is in the flow.
- Some versions specific to Catalyst platform.

### **NetFlow Version 1**

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface
- Other: Bitwise OR of TCP flags.
- Obsolete

### **NetFlow Versions 2-4**

- Cisco internal
- Were never released

#### NetFlow v5

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface.
- Other: Bitwise OR of TCP flags, Source/Destination AS and IP Mask.
- Packet format adds sequence numbers for detecting lost exports.
- IPv4 only

#### NetFlow v8

- Aggregated v5 flows.
- Not all flow types available on all equipments
- Much less data to post process, but loses fine granularity of v5 – no IP addresses.

#### NetFlow v9

- IPv6 support
- Additional fields like MPLS labels
- Builds on earlier versions

## **Cisco IOS Configuration**

- Configured on each input interface.
- Define the version.
- Define the IP address of the collector (where to send the flows).
- Optionally enable aggregation tables.
- Optionally configure flow timeout and main (v5) flow table size.
- Optionally configure sample rate.

## **Cisco IOS Configuration**

```
ip flow-top-talkers
  top 10
  sort-by bytes
```

gw-169-223-2-0#sh ip flow top-talkers

| SrcIf    | SrcIPaddress          | DstIf   | DstIPaddress  | $\mathtt{Pr}$ | $\mathtt{SrcP}$ | DstP | Bytes |
|----------|-----------------------|---------|---------------|---------------|-----------------|------|-------|
| Fa0/1    | 169.223.2.2           | Fa0/0   | 169.223.11.33 | 06            | 0050            | 0B64 | 3444K |
| Fa0/1    | 169.223.2.2           | Fa0/0   | 169.223.11.33 | 06            | 0050            | 0B12 | 3181K |
| Fa0/0    | 169.223.11.33         | Fa0/1   | 169.223.2.2   | 06            | 0B12            | 0050 | 56K   |
| Fa0/0    | 169.223.11.33         | Fa0/1   | 169.223.2.2   | 06            | 0B64            | 0050 | 55K   |
| Fa0/1    | 169.223.2.2           | Local   | 169.223.2.1   | 01            | 0000            | 0303 | 18K   |
| Fa0/1    | 169.223.2.130         | Fa0/0   | 64.18.197.134 | 06            | 9C45            | 0050 | 15K   |
| Fa0/1    | 169.223.2.130         | Fa0/0   | 64.18.197.134 | 06            | 9C44            | 0050 | 12K   |
| Fa0/0    | 213.144.138.195       | Fa0/1   | 169.223.2.130 | 06            | 01BB            | DC31 | 7167  |
| Fa0/0    | 169.223.15.102        | Fa0/1   | 169.223.2.2   | 06            | C917            | 0016 | 2736  |
| Fa0/1    | 169.223.2.2           | Local   | 169.223.2.1   | 06            | DB27            | 0016 | 2304  |
| 10 of 10 | top talkers shown. 49 | 9 flows | processed.    |               |                 |      |       |

## **Cisco Command Summary**

Enable CEF (done by default)

```
-ip cef
```

Enable flow on each interface

```
ip route cache flow
OR
ip flow ingress
ip flow egress
```

View flows

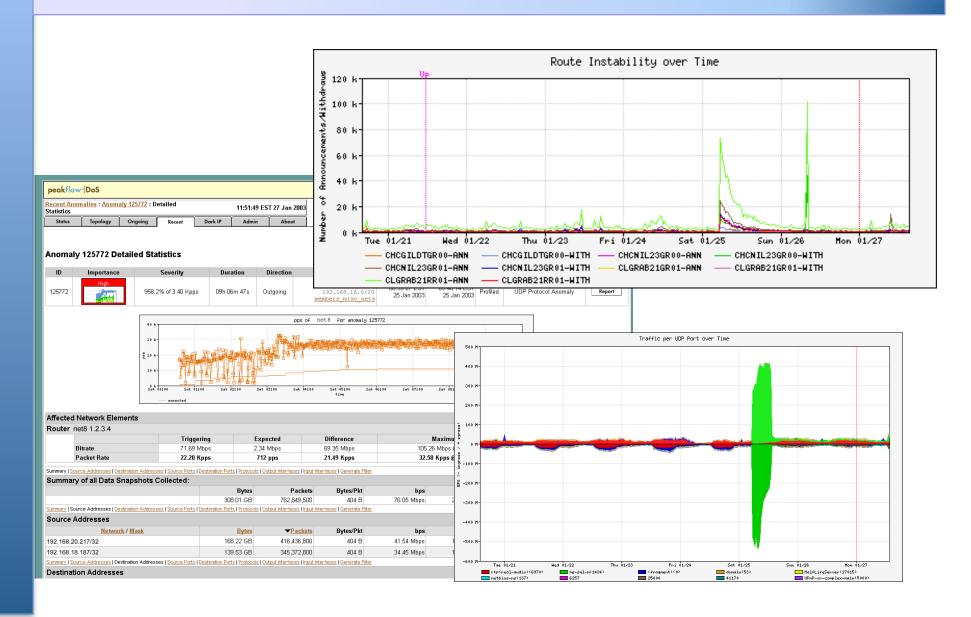
```
show ip cache flowshow ip flow top-talkers
```

## **Cisco Command Summary**

Exporting Flows to a collector

```
ip flow-export version 5 [origin-as|peer-as]
ip flow-export destination x.x.x.x <udp-port>
```

- Origin AS will include the origin AS Number in the flow while Peer AS will only include the AS Number of the peering neighbor
- Exporting aggregated flows


```
ip flow-aggregation cache as|prefix|dest|source|proto
  enabled
  export destination x.x.x.x <udp-port>
```

## Flows and Applications

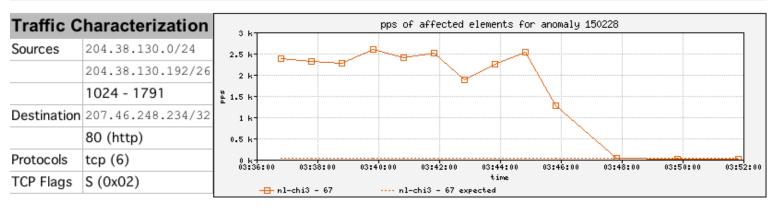
#### **Uses for NetFlow**

- Problem identification / solving
  - Traffic classification
  - DoS Traceback (some slides by Danny McPherson)
- Traffic Analysis and Engineering
  - Inter-AS traffic analysis
  - Reporting on application proxies
- Accounting (or billing)
  - Cross verification from other sources
  - Can cross-check with SNMP data

## Detect Anomalous Events: SQL "Slammer" Worm\*



## Flow-based Detection (cont)\*


## Once baselines are built anomalous activity can be detected

- Pure rate-based (pps or bps) anomalies may be legitimate or malicious
- Many misuse attacks can be immediately recognized, even without baselines (e.g., TCP SYN or RST floods)
- Signatures can also be defined to identify "interesting" transactional data (e.g., proto udp and port 1434 and 404 octets(376 payload) == slammer!)
- Temporal compound signatures can be defined to detect with higher precision

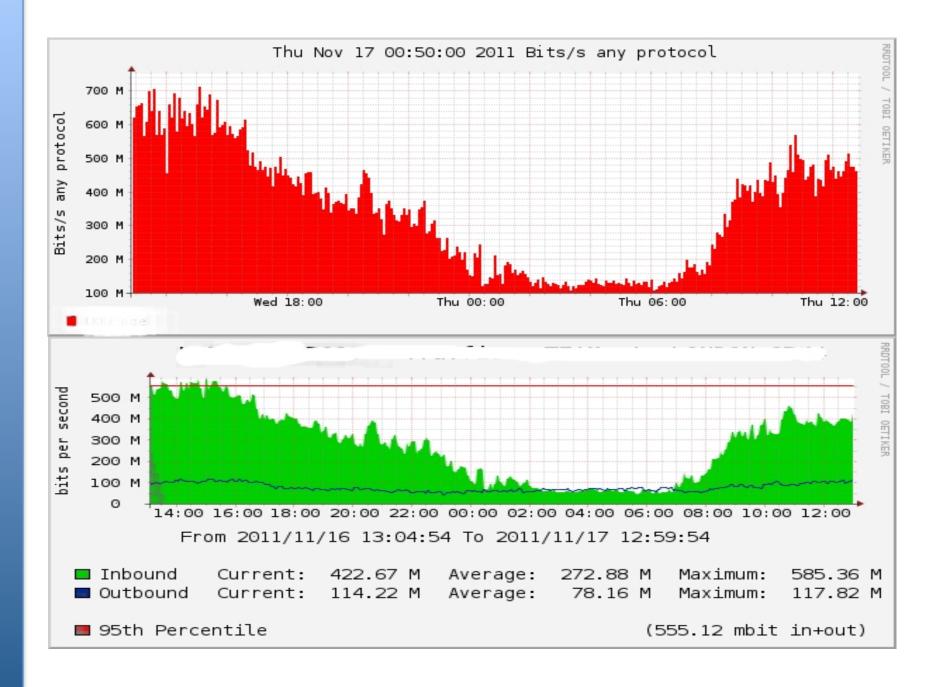
### Flow-based Commercial Tools...\*

#### Anomaly 150228 Get Report: PDF XML

| ID     | Importance               | Duration | Start Time    | Direction | Type                    | Resource                                        |
|--------|--------------------------|----------|---------------|-----------|-------------------------|-------------------------------------------------|
| 150228 | High<br>130.0% of 2 Kpps | 17 mins  | 03:34, Aug 16 | Incoming  | Bandwidth<br>(Profiled) | Microsoft<br>207.46.0.0/16<br>windowsupdate.com |



| Affected Network Elements           |            | Expected | pected Observed bps |         | Observed pps |       |         |
|-------------------------------------|------------|----------|---------------------|---------|--------------|-------|---------|
|                                     | Importance | pps      | Max                 | Mean    | Max          | Mean  |         |
| Router nl-chi3 198.110.131.125      | High       |          |                     |         |              |       |         |
| Interface 67 at-1/1/0.14 pvc to WMU |            | 26       | 832 K               | 563.1 K | 2.6 K        | 1.7 K | Details |


#### **Anomaly Comments**

# Commercial Detection: A Large Scale DOS Attack



## Accounting

Flow based accounting can be a good supplement to SNMP based accounting.



#### References

- flow-tools:
   http://www.splintered.net/sw/flow-tools
- WikiPedia: http://en.wikipedia.org/wiki/Netflow
- NetFlow Applications

http://www.inmon.com/technology/netflowapps.php

- Netflow HOW-TO
   http://www.linuxgeek.org/netflow-howto.php
- IETF standards effort: http://www.ietf.org/html.charters/ipfix-charter.html

#### References

- Abilene NetFlow page http://abilene-netflow.itec.oar.net/
- Flow-tools mailing list: flow-tools@splintered.net
- Cisco Centric Open Source Community http://cosi-nms.sourceforge.net/related.html
- Cisco NetFlow Collector User Guide
   http://www.cisco.com/en/US/docs/net\_mgmt/netflow\_collection\_engine/6.0/tier\_one/user/guide/user.html