
Security through Cryptography

Linux System
Administration

Three things “to get”

1.  Public / Private Keys
2.  Hashes
3.  Digital Certificates

What's our Goal with all this?

•  -- Confidentiality
•  -- Integrity
•  -- Authentication
 - Access Control
 - Verification

 - Repudiation

•  -- Availability

Ciphers and Keys

Cryptography Plays a BIG Role

-  ssh/scp/sftp
-  ssl/tls/https
-  pgp
-  pops/imaps
-  smtps
-  vpn's
-  dnssec

-  wep/wpa
-  digital signatures
-  certificates
-  pki
-  drm
-  disk encryption
-  etc...

We may take it for granted, but cryptography
is behind much of what we do today:

“Applied Cryptography”

Written by Bruce Schneier. This is, perhaps, the
best book around if you want to
understand how all this works.

  Crypto-Gram email newsletter
 - http://www.schneir.com/crypto-gram.html

  Counterpane Security
 - http://www.counterpane.com/

  A voice of reason around much of the
security hysteria we face today.

Terminology

For some boring...
For others fascinating...
We understand the terminology to use the

tools.

Terminology Cont.

We have 

  hashes/message digests
 - md5/sha1/sha2/sha3
 - collisions

  entropy (randomness)
  keys

 - symmetric
 - asymmetric (public/private)
 - length
 - distribution
 - creation

  ciphers
 - block
 - stream

  plaintext/ciphertext
  password/passphrase

...which lead to...
  SSL/TLS

 - Digital Certificates
 + CSRs
 + CRTs
 + PEM files
 + CAs

  SSH
  PGP
  Secure email with:

 - secure SMTP
 + SSL
 + StartTLS
 - POPS, IMAPS

Ciphers  ciphertext:
The foundation

•  We start with plaintext. Something you
can read.

•  We apply a mathematical algorithm to
the plaintext.

•  The algorithm is the cipher.
•  The plaintext is turned in to ciphertext.
•  Almost all ciphers were secret until

recently.
•  Creating a secure cipher is HARD.

What it Looks Like

Keys

•  Ciphertext and back to plaintext – Apply
a key.

•  Security of ciphertext with key. Lost key
= compromised data.

•  This is a private key.
•  This type of cipher system is efficient for

large amounts of data.
•  This is a symmetric

cipher.

Symmetric Cipher

 Private Key/Symmetric Ciphers

clear
text

clea
r
text

cipher
text

K K
The same key is used to encrypt the document before

sending and to decrypt it once it is received

Examples of Symmetric
Ciphers

DES - 56 bit key length, designed by US
security service

3DES - effective key length 112 bits
AES (Advanced Encryption Standard) -

128 to 256 bit key length
Blowfish - 128 bits, optimized for

fast operation on 32-bit processors
IDEA - 128 bits, patented (requires a

license for commercial use)

Features of Symmetric Ciphers

  Fast to encrypt and decrypt, suitable for large
volumes of data

  Brute force attack only to crack.

  Problem - how do you distribute the keys?

Problem: How do you distribute
the keys?

Answer

 Public / Private Keys!

Public/Private Keys

We generate a cipher key pair. One key is the
private key, the other is the public key.

The private key remains secret and should be
protected.

The public key is freely distributable. It is related
mathematically to the private key, but you cannot
(easily) reverse engineer the private key from the
public key.

Use the public key to encrypt data.
Only someone with the private
key can decrypt.

Example: Public/Private key pair

clear
text

clear
text k1

(public key)

k2
(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it.

This is a big deal!

Less Efficient & Attackable

  Symmetric much more efficient. About
1000x > public data transmission!

  Attack on the public key is possible via
chosen-plaintext attack. Thus, the
public/private key pair need to be large
(2048 bits).

  We’ll see how to use this combination.
Remember, symmetric cipher attack is to steal the private

key...

Hashing – Checksums - Digests

One-Way Hashing Functions

•  Mathematical function that generates a
fixed length result regardless of amount
of data used.

•  Cannot generate original data from
fixed-length result.

•  Two sets of data that produce the same
fixed-length result. are called collisions.

Hashing Function Examples

 Unix crypt() function, based on DES, 56 bits (not secure)

 MD5 (Message Digest 5) - 128 bit hash (deprecated)

 SHA-1 (Secure Hash Algorithm) - 160 bits (deprecating)

 SHA-3 (Secure Hash Algorithm 3) – 256-1024 bits
(upcoming)

 Still no feasible method to create any document which has
a given digest (hash sum, checksum).

Hashing
One-Way Encryption

clear
text

Munging the document gives a short
message digest (checksum). Not possible to go

back from the digest to the original document.

Fixed length hash
or message digest

hashing
function

Hashing
one-way encryption: another example

Note the significant change in the hash sum for minor changes in the
input. Note that the hash sum is the same length for varying input sizes.
This is extremely useful.

*Image courtesy Wikipedia.org.

One-Way Hashing Functions

Applying a hashing function to plaintext is
called munging the document.

The fixed-length result is referred to as a
checksum, fingerprint, message digest,
signature, digest, hash, hash sum...

What use is this?

 You can run many megabytes of data
through a hashing function, but only have to
check 160* bits of information. A compact
and unique document signature.*

 Generate a passphrase for your data – such
as your private key. If someone gets your
private key, they still must know your
passphrase to decrypt anything using your
private key.

 This is how Unix, Linux and Windows protect
user passwords (but not effectively).

What use is this?

 You can run many megabytes of data
through a hashing function, but only have to
check 160* bits of information. A compact
and unique document signature.*

 Generate a passphrase for your data – such
as your private key. If someone gets your
private key, they still must know your
passphrase to decrypt anything using your
private key.

 This is how Unix, Linux and Windows protect
user passwords (but not effectively).

Review

Applying a hashing function to plaintext is
called munging the document.

The fixed-length result is referred to as a
checksum, fingerprint, message digest,
signature, digest, hash, hash sum...

Let's give it a try

Munge a document...

Connect to your machine and become root:
$ sudo bash

Copy a file and run the sha1sum hashing function on it:
cp /etc/motd .
sha1sum motd

Make note of the result. Edit the file and change 1 character:
vi motd

Save the file and run sha1sum again:
sha1sum motd

•  How different were the results?
•  A good hashing function changes message digest

significantly for small differences

Hybrid Systems & Digital Signatures

Hybrid Systems

•  Symmetric Ciphers encrypt lots of data
securely and quickly.

•  Public key systems encrypts lots of data very
slowly in order to be secure.

•  Public keys, however, let us solve the private
key distribution problem.

•  How do we take advantage of this...?

Hybrid Systems

...we do this:
-  Start with a symmetric cipher on one side.
-  Generate a one-time private key.
-  Encrypt the key using a public key.
-  Send it to the other side, decrypt the one-

time key.
-  Start transmitting data using the symmetric

cipher.
 (more trumpets, fireworks, etc...)

Hybrid Systems

Use a symmetric cipher with a random key (the
"session key"). Use a public key to encrypt the
session key and send it along with the
encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private) (public)

Hybrid Systems cont...

Two things should (imho) stand out:
–  “Send it to the other side, decrypt the one-

time key.” How?
–  What about protecting your private key?

Any ideas?

Hybrid Systems cont...

•  “Send it to the other side, decrypt the
one-time key.” How?

Use your private key.

•  What about protecting your private key?

Encrypt it using a hash function.

Protecting the Private Key

k2
(encrypted

on disk)

Passphrase
entered by

user

k2
ready

for use

hash

symmetric
cipher

key

K2
= private
key

*Such as SHA-1 or SHA-2

Checking passphrases/passwords

Q.) How do you do this?
A.) It's very simple.

-  Type in a passphrase/password.
-  Run the hashing function on the text.
-  If the message digest matches, you typed

in the correct passphrase/password.

Digital Signatures

Digital Signatures

Let's reverse the role of public and private keys.
To create a digital signature on a document:

-  Munge a document.
-  Encrypt the message digest with your private

key.
-  Send the document plus the encrypted

message digest.
-  On the other end munge the document and

decrypt the encrypted message digest with the
person's public key.

-  If they match, the document is authenticated.

Digital Signatures cont.

Take a hash of the document and encrypt
only that. An encrypted hash is called a
"digital signature"

k2 k1

digital
signature

COMPARE

hash hash

(public) (private)

Another View

Digital Signatures & many uses

  E-commerce. An instruction to your bank to transfer
money can be authenticated with a digital signature.

  A trusted third party can issue declarations such as "the
holder of this key is a person who is legally known as
Alice Hacker"

Like a passport binds your identity to your face

  Such a declaration is called a "certificate"

  You only need the third-party's public key to check the
signature

  We'll talk about this more later.

Use for Authentication:
Reverse the Roles of the Keys

clear
text

clear
text k2

(private key)

k1
(public key)

cipher
text

If you can decrypt the document with the public key, it
proves it was written by the owner of the private key
(and was not changed).

Summary

The core idea you should take away from this
is how a hybrid cryptosystem works:

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private) (public)

Back in the real world...

Summary cont.

Finally – Remember, we are using
open cryptosystems. This means that the
cipher algorithm is known and available.

The security of your data rests with the
private key, not with keeping the cipher
secret.

All Clear? :-)
Questions?

Questions

?

