
DNS Session 2: DNS cache
operation and DNS debugging

TERNET – NSRC - 2012

DNS Cache Operation

How caching NS works (1)

●  If we've dealt with this query before recently,
answer is already in the cache - easy!

Resolver Caching
NS

Query"

Response"

What if the answer is not in the
cache?

●  DNS is a distributed database: parts of the tree
(called "zones") are held in different servers

●  They are called "authoritative" for their
particular part of the tree

●  It is the job of a caching nameserver to locate
the right authoritative nameserver and get back
the result

●  It may have to ask other nameservers first to
locate the one it needs

How caching NS works (2)

Resolver Caching
NS

Query"
1!

Auth
NS

2!

Auth
NS

3!

Auth
NS

4!
Response"

5!

How does it know which
authoritative nameserver to ask?

●  It follows the hierarchical tree structure
●  e.g. to query "www.tiscali.co.uk"

. (root)!

uk!

co.uk!

tiscali.co.uk!

1. Ask here

2. Ask here

3. Ask here

4. Ask here

Intermediate nameservers return
"NS" resource records

●  "I don't have the answer, but try these other
nameservers instead"

●  Called a REFERRAL
●  Moves you down the tree by one or more levels

Eventually this process will either:

●  Find an authoritative nameserver which knows
the answer (positive or negative)

●  Not find any working nameserver: SERVFAIL
●  End up at a faulty nameserver - either cannot

answer and no further delegation, or wrong
answer!

●  Note: the caching nameserver may happen also to be an
authoritative nameserver for a particular query. In that
case it will answer immediately without asking anywhere
else. We will see later why it's a better idea to have
separate machines for caching and authoritative
nameservers

How does this process start?
Each caching nameserver has a list of root servers

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

/etc/bind/named.conf

/etc/bind/named.conf.default-zones

zone "." {
 type hint;
 file "/etc/bind/db.root";

};

/etc/bind/db.root

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:BA3E::2:30
;
; FORMERLY NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
..
..

Where did named.root come from?

●  ftp://ftp.internic.net/domain/named.cache
●  Worth checking every 6 months or so for

updates

Demonstration

●  dig +trace www.tiscali.co.uk.

●  Instead of sending the query to the cache, "dig
+trace" traverses the tree from the root and
displays the responses it gets
–  dig +trace is a bind 9 feature
–  useful as a demo but not for debugging

Distributed systems have many
points of failure!

●  So each zone has two or more authoritative
nameservers for resilience

●  They are all equivalent and can be tried in any
order

●  Trying stops as soon as one gives an answer
●  Also helps share the load
●  The root servers are very busy

–  There are currently 13 of them (each of which is a
large cluster)

Caching reduces the load on auth
nameservers

●  Especially important at the higher levels: root
servers, GTLD servers (.com, .net ...) and
ccTLDs

●  All intermediate information is cached as well
as the final answer - so NS records from
REFERRALS are cached too

Example 1: www.tiscali.co.uk (on an
empty cache)

root
server

www.tiscali.co.uk (A)"

referral to 'uk' nameservers"

uk
server

www.tiscali.co.uk (A)"

referral to 'tiscali.co.uk' nameservers"

tiscali.co.uk
server

www.tiscali.co.uk (A)"

Answer: 212.74.101.10"

Example 2: smtp.tiscali.co.uk (after
previous example)

tiscali.co.uk
server

smtp.tiscali.co.uk (A)"

Answer: 212.74.114.61"

Previous referrals!
retained in cache!

Caches can be a problem if data
becomes stale

●  If caches hold data for too long, they may give
out the wrong answers if the authoritative data
changes

●  If caches hold data for too little time, it means
increased work for the authoritative servers

The owner of an auth server
controls how their data is cached

●  Each resource record has a "Time To
Live" (TTL) which says how long it can be kept
in cache

●  The SOA record says how long a negative
answer can be cached (i.e. the non-existence of
a resource record)

●  Note: the cache owner has no control - but they
wouldn't want it anyway

A compromise policy

●  Set a fairly long TTL - 1 or 2 days
●  When you know you are about to make a

change, reduce the TTL down to 10 minutes
●  Wait 1 or 2 days BEFORE making the change
●  After the change, put the TTL back up again

Any questions?

?

DNS Debugging

What sort of problems might occur
when resolving names in DNS?

●  Remember that following referrals is in general
a multi-step process

●  Remember the caching

(1) One authoritative server is down
or unreachable

●  Not a problem: timeout and try the next
authoritative server
–  Remember that there are multiple authoritative

servers for a zone, so the referral returns multiple
NS records

(2) *ALL* authoritative servers are
down or unreachable!

●  This is bad; query cannot complete
●  Make sure all nameservers not on the same

subnet (switch/router failure)
●  Make sure all nameservers not in the same

building (power failure)
●  Make sure all nameservers not even on the

same Internet backbone (failure of upstream
link)

●  For more detail read RFC 2182

(3) Referral to a nameserver which
is not authoritative for this zone

●  Bad error. Called "Lame Delegation"
●  Query cannot proceed - server can give neither

the right answer nor the right delegation
●  Typical error: NS record for a zone points to a

caching nameserver which has not been set up
as authoritative for that zone

●  Or: syntax error in zone file means that
nameserver software ignores it

(4) Inconsistencies between
authoritative servers

●  If auth servers don't have the same information
then you will get different information depending
on which one you picked (random)

●  Because of caching, these problems can be
very hard to debug. Problem is intermittent.

(5) Inconsistencies in delegations

●  NS records in the delegation do not match NS
records in the zone file (we will write zone files
later)

●  Problem: if the two sets aren't the same, then
which is right?
–  Leads to unpredictable behaviour
–  Caches could use one set or the other, or the union

of both

(6) Mixing caching and authoritative
nameservers

●  Consider when caching nameserver contains
an old zone file, but customer has transferred
their DNS somewhere else

●  Caching nameserver responds immediately
with the old information, even though NS
records point at a different ISP's authoritative
nameservers which hold the right information!

●  This is a very strong reason for having
separate machines for authoritative and
caching NS

●  Another reason is that an authoritative-only NS has a
fixed memory usage

(7) Inappropriate choice of
parameters

●  e.g. TTL set either far too short or far too long

These problems are not the fault of
the caching server!

●  They all originate from bad configuration of the
AUTHORITATIVE name servers

●  Many of these mistakes are easy to make but
difficult to debug, especially because of caching

●  Running a caching server is easy; running
authoritative nameservice properly requires
great attention to detail

How to debug these problems?

●  We must bypass caching
●  We must try *all* N servers for a zone (a

caching nameserver stops after one)
●  We must bypass recursion to test all the

intermediate referrals
●  "dig +norec" is your friend
dig +norec @1.2.3.4 foo.bar. a

Server to query" Domain" Query type"

How to interpret responses (1)

●  Look for "status: NOERROR"
●  "flags ... aa" means this is an authoritative

answer (i.e. not cached)
●  "ANSWER SECTION" gives the answer
●  If you get back just NS records: it's a referral

;; ANSWER SECTION
foo.bar. 3600 IN A 1.2.3.4

Domain name" TTL" Answer"

How to interpret responses (2)

●  "status: NXDOMAIN"
–  OK, negative (the domain does not exist). You

should get back an SOA
●  "status: NOERROR" with zero RRs

–  OK, negative (domain exists but no RRs of the type
requested). Should get back an SOA

●  Other status may indicate an error
●  Look also for Connection Refused (DNS server

is not running or doesn't accept queries from
your IP address) or Timeout (no answer)

How to debug a domain using
"dig +norec" (1)

1.  Start at any root server: [a-m].root-
servers.net.

1. For a referral, note the NS records returned
2. Repeat the query for *all* NS records
3. Go back to step 2, until you have got the final

answers to the query

dig +norec @a.root-servers.net. www.tiscali.co.uk. a

Remember the trailing dots!!

How to debug a domain using
"dig +norec" (2)

1.  Check all the results from a group of
authoritative nameservers are consistent with
each other

2.  Check all the final answers have "flags: aa"
3.  Note that the NS records point to names, not

IP addresses. So now check every NS record
seen maps to the correct IP address using the
same process!!

How to debug a domain using
"dig +norec" (3)

●  Tedious, requires patience and accuracy, but it
pays off

●  Learn this first before playing with more
automated tools
–  Such as:

●  http://www.squish.net/dnscheck/
●  http://www.zonecheck.fr/

–  These tools all have limitations, none is perfect

Practical

Worked examples

Building your own caching
nameserver

●  Most common software is “BIND” (Berkeley
Internet Name Domain) from ISC, www.isc.org
–  There are other options, e.g. NSD, www.nlnetlabs.nl

●  Most UNIX/Linux distributions have a package
for bind and will configure it as a cache.
–  Ubuntu: apt-get install bind9
–  RedHat/Fedora/CentoOS: yum –y install bind
–  FreeBSD: in the base system
–  Question: what sort of hardware would you choose

when building a DNS cache?

Improving the configuration

●  Limit client access to your own IP addresses
only
–  No reason for other people on the Internet to be

using your cache resources
●  Make cache authoritative for queries which

should not go to the Internet
–  localhost → A 127.0.0.1
–  1.0.0.127.in-addr.arpa → PTR localhost
–  RFC 1918 addresses (10/8, 172.16/12, 192.168/16)
–  Gives quicker response and saves sending

unnecessary queries to the Internet

Access control

acl ternet {
 127.0.0.1;
 10.10.0.0/24;
};

Options {
 directory "/var/cache/bind";

 forwarders {
 10.10.0.254;
 };

 auth-nxdomain no; # conform to RFC1035
 listen-on-v6 { any; };
 recursion yes;
 allow-recursion { ternet; };
listen-on { any; };

};

/etc/bind/named.conf.options

localhost -> 127.0.0.1

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

/etc/bind/named.conf

/etc/bind/db.local

$TTL 604800
@ IN SOA localhost. root.localhost. (

 2 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL

;
@ IN NS localhost.
@ IN A 127.0.0.1
@ IN AAAA ::1

zone "localhost" {
 type master;
 file "/etc/bind/db.local";
};

/etc/bind/named.conf.default-zones

127.0.0.1 -> localhost

/etc/bind/db.127

$TTL 604800
@ IN SOA localhost. root.localhost. (

 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL

;
@ IN NS localhost.
1.0.0 IN PTR localhost.

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

/etc/bind/named.conf

/etc/bind/named.conf.default-zones

zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
};

rfc 1918 zones

/etc/bind/zones.rfc1918

zone "10.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };

zone "16.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
zone "17.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
zone "18.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
zone "19.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
...
...
...
zone "29.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
zone "30.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };
zone "31.172.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };

zone "168.192.in-addr.arpa" { type master; file "/etc/bind/db.empty"; };

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

/etc/bind/named.conf

/etc/bind/named.conf.local

// Consider adding the 1918 zones here, if they are not used in your
// organization
//include "/etc/bind/zones.rfc1918";

Managing a caching nameserver
●  service bind9 start

●  rndc status

●  rndc reload
–  After config changes; causes less disruption than

restarting the daemon
●  rndc dumpdb

–  dumps current cache contents to
/var/cache/bind/named_dump.db

●  rndc flush
–  Destroys the cache contents; don't do on a live

system!

Absolutely critical!

●  tail /var/log/syslog
–  after any nameserver changes and reload/restart

●  A syntax error may result in a nameserver
which is running, but not in the way you wanted

●  bind is very fussy about syntax
–  Beware } and ;
–  Within a zone file, comments start with semicolon (;)

NOT hash (#)

Practical

●  Build a caching nameserver
●  Examine its operation

