DNS Session 2: DNS cache
operation and DNS debugging

TERNET — NSRC - 2012



DNS Cache Operation



How caching NS works (1)

. If we've dealt with this query before recently,
answer is already in the cache - easy!

Response




What if the answer is not in the
cache?

. DNS is a distributed database: parts of the tree
(called "zones") are held in different servers

. They are called "authoritative" for their
particular part of the tree

. Itis the job of a caching nameserver to locate
the right authoritative nameserver and get back
the result

. It may have to ask other nameservers first to
locate the one it needs



How caching NS works (2)




How does it know which
authoritative nameserver to ask?

. It follows the hierarchical tree structure

. e.g. to query "www.tiscali.co.uk”

. (root) «—— |1. ask here

UK | ) Ask here

[

CO'UK 4 | 3, Ask here

/

tiscali.co.uk «——— | 4. Ask here




Intermediate nameservers return
"NS" resource records

. "I don't have the answer, but try these other
nameservers instead"

. Called a REFERRAL

. Moves you down the tree by one or more levels



Eventually this process will either:

. Find an authoritative nameserver which knows
the answer (positive or negative)

. Not find any working nameserver: SERVFAIL

. End up at a faulty nameserver - either cannot
answer and no further delegation, or wrong
answer!

. Note: the caching nameserver may happen also to be an
authoritative nameserver for a particular query. In that
case it will answer immediately without asking anywhere
else. We will see later why it's a better idea to have
separate machines for caching and authoritative
nameservers



How does this process start?

Each caching nameserver has a list of root servers

/etc/bind/named.confl

/etc/bind/named.conf.default-zones I

/etc/bind/db.rootl




Where did named.root come from?

. ftp://ftp.internic.net/domain/named.cache

. Worth checking every 6 months or so for
updates



Demonstration

. dig +trace www.tiscali.co.uk.

. Instead of sending the query to the cache, "dig
+trace" traverses the tree from the root and
displays the responses it gets

- dig +trace is a bind 9 feature

— useful as a demo but not for debugging



Distributed systems have many
points of failure!

. S0 each zone has two or more authoritative
nameservers for resilience

. They are all equivalent and can be tried in any
order

. Trying stops as soon as one gives an answer
. Also helps share the load

. The root servers are very busy

- There are currently 13 of them (each of which is a
large cluster)



Caching reduces the load on auth
nameservers

. Especially important at the higher levels: root

servers, GTLD servers (.com, .net ...) and
ccTLDs

. All intermediate information is cached as well
as the final answer - so NS records from
REFERRALS are cached too



Example 1: www.tiscali.co.uk (on an
empty cache)

<

referral to 'uk' nameservers

<

referral to 'tiscali.co.uk' nameservers

<
Answer: 212.74.101.10




Example 2: smtp.tiscali.co.uk (after
previous example)

Previous referrals
retained in cache

smtp.tiscali.co.uk (A) N -

Answer: 212.74.114.61




Caches can be a problem if data
becomes stale

. If caches hold data for too long, they may give
out the wrong answers if the authoritative data
changes

. If caches hold data for too little time, it means
iIncreased work for the authoritative servers



The owner of an auth server
controls how their data I1s cached

. Each resource record has a "Time To
Live" (TTL) which says how long it can be kept
In cache

. The SOA record says how long a negative
answer can be cached (i.e. the non-existence of

a resource record)

. Note: the cache owner has no control - but they
wouldn't want it anyway



A compromise policy

. Set a fairly long TTL - 1 or 2 days

. When you know you are about to make a
change, reduce the TTL down to 10 minutes

. Wait 1 or 2 days BEFORE making the change
. After the change, put the TTL back up again



Any questions?




DNS Debugging



What sort of problems might occur
when resolving names in DNS?

. Remember that following referrals is in general
a multi-step process

. Remember the caching



(1) One authoritative server is down
or unreachable

. Not a problem: timeout and try the next
authoritative server

- Remember that there are multiple authoritative
servers for a zone, so the referral returns multiple
NS records



(2) *ALL* authoritative servers are
down or unreachable!

. This is bad; query cannot complete

. Make sure all nameservers not on the same
subnet (switch/router failure)

. Make sure all nameservers not in the same
building (power failure)

. Make sure all nameservers not even on the
same Internet backbone (failure of upstream
link)

. For more detail read RFC 2182



(3) Referral to a nameserver which
IS not authoritative for this zone

. Bad error. Called "Lame Delegation”

. Query cannot proceed - server can give neither
the right answer nor the right delegation

. Typical error: NS record for a zone points to a
caching nameserver which has not been set up
as authoritative for that zone

. Or: syntax error in zone file means that
nameserver software ignores it



(4) Inconsistencies between
authoritative servers

. If auth servers don't have the same information
then you will get different information depending
on which one you picked (random)

. Because of caching, these problems can be
very hard to debug. Problem is intermittent.



(5) Inconsistencies in delegations

. NS records in the delegation do not match NS

records in the zone file (we will write zone files
later)

. Problem: if the two sets aren't the same, then
which is right?
- Leads to unpredictable behaviour

- Caches could use one set or the other, or the union
of both



(6) Mixing caching and authoritative

nameservers
. Consider when caching nameserver contains
an old zone file, but customer has transferred
their DNS somewhere else

. Caching nameserver responds immediately
with the old information, even though NS
records point at a different ISP's authoritative
nameservers which hold the right information!

. This is a very strong reason for having
separate machines for authoritative and
caching NS

. Another reason is that an authoritative-only NS has a
fixed memory usage



(7) Inappropriate choice of
parameters

. e.g. TTL set either far too short or far too long



These problems are not the fault of
the caching server!

. They all originate from bad configuration of the
AUTHORITATIVE name servers

. Many of these mistakes are easy to make but
difficult to debug, especially because of caching

. Running a caching server is easy; running
authoritative nameservice properly requires
great attention to detail



How to debug these problems?

. We must bypass caching

. We must try *all* N servers for a zone (a
caching nameserver stops after one)

. We must bypass recursion to test all the
intermediate referrals

. "dig +norec" is your friend

S



How to interpret responses (1)

. Look for "status: NOERROR"

. "flags ... aa" means this is an authoritative
answer (i.e. not cached)

. "ANSWER SECTION" gives the answer
. If you get back just NS records: it's a referral




How to interpret responses (2)

"status: NXDOMAIN"

- OK, negative (the domain does not exist). You
should get back an SOA

"status: NOERROR" with zero RRs

- OK, negative (domain exists but no RRs of the type
requested). Should get back an SOA

. Other status may indicate an error
. Look also for Connection Refused (DNS server

is not running or doesn't accept queries from
your |P address) or Timeout (no answer)



How to debug a domain using
"dig +norec" (1)

1. Start at any root server: [a-m].root-

Remember the trailing dots!
1. For a referral, note the NS records returned

2. Repeat the query for *all* NS records

3. Go back to step 2, until you have got the final
answers to the query



1.

How to debug a domain using
"dig +norec" (2)

Check all the results from a group of
authoritative nameservers are consistent with
each other

Check all the final answers have "flags: aa"

Note that the NS records point to names, not
|IP addresses. So now check every NS record
seen maps to the correct IP address using the
same process!!



How to debug a domain using
"dig +norec" (3)

. Tedious, requires patience and accuracy, but it
pays off

. Learn this first before playing with more
automated tools

- Such as:

. http://www.squish.net/dnscheck/
. http://www.zonecheck.fr/

- These tools all have limitations, none is perfect



Practical

Worked examples



Building your own caching
nameserver

. Most common software is “BIND” (Berkeley
Internet Name Domain) from ISC, www.isc.org

- There are other options, e.g. NSD, www.nlnetlabs.nl

. Most UNIX/Linux distributions have a package
for bind and will configure it as a cache.

- Ubuntu: apt-get install bind9
- RedHat/Fedora/CentoOS: yum -y install bind
- FreeBSD: in the base system

- Question: what sort of hardware would you choose
when building a DNS cache?



Improving the configuration

. Limit client access to your own IP addresses
only

- No reason for other people on the Internet to be
using your cache resources

. Make cache authoritative for queries which
should not go to the Internet

— localhost —~ A 127.0.0.1
- 1.0.0.127.in-addr.arpa - PTR localhost
- RFC 1918 addresses (10/8, 172.16/12, 192.168/16)

- Gives quicker response and saves sending
unnecessary queries to the Internet



Access control

/etc/bind/named.conf.options I




localhost -> 127.0.0.1

/etc/bind/named.confl

/etc/bind/named.conf.default-zones I

/etc/bind/db.local |




127.0.0.1 -> localhost

/etc/bind/named.confl

/etc/bind/named.conf.default-zones I

/etc/bind/db.127 |




rfc 1918 zones

/etc/bind/named.confl

/etc/bind/named.conf.localI

/etc/bind/zones.rfcl918|




Managing a caching nameserver

. Service bind9 start

. rndc status

. rndc reload

— After config changes; causes less disruption than
restarting the daemon

. rndc dumpdb

- dumps current cache contents to
/var/cache/bind/named dump.db

. rndc flush

— Destroys the cache contents; don't do on a live
system!



Absolutely critical!

. tail /var/log/syslog
- after any nameserver changes and reload/restart

. A syntax error may result in a nameserver
which is running, but not in the way you wanted

. bind is very fussy about syntax

- Beware } and ;

- Within a zone file, comments start with semicolon (;)
NOT hash (#)



Practical

. Build a caching nameserver
. Examine its operation



