Linux System
Administration

Getting Started with Linux

Day 1: Modules

ok~ w0Ddh-=

Linux overview
Command Line Interface or the “CL/I”
Permissions

Editors
Ubuntu Linux and more commands

Module 1: Linux Overview

UNIX History

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985
1986
1987
1988
1989
1990
1991

1992

1993
1994

1995
1996
1997

1998

1999

2000
2001 to 2004

2005

2006 to 2010

BSD
1.0t0 2.0

[~ UnixTSS
/ 5t06 |
EUnixTSS:
7

Unix TSS

1to4

PWB/Unix

BSD
3.0to 4.1

91010 Tahoe

BSD 4.3
Reno

BSD NET/2

386BSD

BSD
441044 lite
2

0.95t0 1.2.x

Free BSD
1.0t02.2.x

Linux
2.0t02.6.x
Free BSD
3.31t08.0
10.0to 10.6

CUn TS5 —
Unix TSS -
('ﬁrg;sf:;;'“l” BSD 4.3

Net BSD
0810 1.0

Net BSD OpenBSD
11t01.2 15)elr:)2.2

Net BSD :
1.3

OpenBSD

S 23to4.x

1.3t05.x

- Open Source
l:l Mixed/Shared Source
I.I Closed Source

[Open Solaris

2008.05 and

later

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981
1982
1983
1984

1985
1986
1987
1988
1989

1990
1991

1992

1993
1994

1995
1996
1997

1998

1999

2000
2001 to 2004

2005

2006 to 2010

Unix vs. Linux

Are they the same?

Yes, at least in terms of operating system interfaces
Linux was developed independently from Unix
Unix is much older (1969 vs. 1991)

Scalability and reliability

Both scale very well and work well under heavy load
(this is an understatement)

Flexibility
Both emphasize small, interchangeable components

Manageability
Remote logins rather than GUI
Scripting is integral
Security
Due to modular design has a reasonable security model
Linux and its applications are not without blame

Is free software really any good?!

« The people who write it also use it

e Source code is visible to all

- The quality of their work reflects on the author
personally

- Others can spot errors and make improvements

« What about support?
- documentation can be good, or not so good
- mailing lists; search the archives first

- if you show you've invested time in trying to solve a
problem, others will likely help you

- http://www.catb.org/~esr/fags/smart-questions.htmi

Is free software really any good?!

Core Internet services run on free software
- BIND Domain Name Server
- Apache web server (secure SSL as well)
- Sendmail, Postfix, Exim for SMTP/POP/IMAP
- MySQL and PostgreSQL databases
- PHP, PERL, Python, Ruby, C languages

Several very high profile end-user projects

- Firefox, original Netscape browser
- OpenOffice / LibreOffice

- Thunderbird, Gimp, Gnome and KDE Desktops
- Ubuntu

What s running Linux?

e 90% of the supercomputer TOP500,
including all TOP 10

. Half of the world's 10 most reliable hosting
companies

« The Internet of Things (to some extent)

. Maybe your smart phone?”?
Android is based on Linux

The Unix/Linux System

Background processing
Non-interactive

(no terminal)

/O (+ terminals)

Memory management (VM)
Interruptions

Scheduling / Timesharing
Networking

DAEMONS

Launch processes

User interaction (terminal)
Job control

(scripting)

T

SHELLS

{EF;N; ‘| I"|

File management
Editors
Compilers
Network tools

Eat Resources :=)
(uid / gid)

Kernel

The "core" of the operating system

Device drivers
— communicate with your hardware
- block devices, character devices, network devices,
pseudo devices (/dev/null)

Filesystems
— organize block devices into files and directories

Memory management
Timeslicing (multitasking)
Networking stacks - esp. TCP/IP
Enforces security model

Shells

Command line interface for executing programs
« Windows equivalent: command.com or command.exe
Also programming languages for scripting
 DOS/Windows equivalent: batch files, WSF, VBScript
Choice of similar but slightly different shells
« sh: the "Bourne Shell". Standardised in POSIX
» csh: the "C Shell". Not standard, but includes command
history
« bash: the "Bourne-Again Shell". Combines POSIX
standard with command history.
e Others: ksh, tcsh, zsh

User processes

The programs that you choose to run
Frequently-used programs tend to have short
cryptic names

- "1s" = list files

- "ep" = copy file

- "rm" = remove (delete) file
Lots of stuff included in most base systems

- editors, compilers, system admin tools
Lots more stuff available to install too

- Using the Debian/Ubuntu repositories

System processes

Programs that run in the background; also
known as "daemons" ==> g:

Examples:
« cron: executes programs at certain times of day
« syslogd: takes log messages and writes them to files

 inetd: accepts incoming TCP/IP connections and starts
programs for each one

» sshd: accepts incoming logins
« sendmail (or other MTA daemon like Postfix): accepts
incoming mail

* "Sparky” from the FreeBSD world

Security model

Numeric IDs
user id (uid 0 = "root", the superuser)

group id
supplementary groups

Mapped to hames
letc/passwd, /etc/group (plain text files)

Suitable security rules enforced

e.g. you cannot Kill a process running as a different user,
unless you are "root"

Filesystem security

Each file and directory has three sets of
permissions
- For the file's uid (user)
- For the file's gid (group)
- For everyone else (other)

Each set of permissions has three bits: rwx
- File: r=read, w=write, x=execute

- Directory: r=list directory contents, w=create/delete
files within this directory, x=enter directory

(executable)

Example: brian wheel rwxr-x---

Filesystem security

The permission flags are read as follows left to

right:
-rW-r—--r—- for regular files,
drwxr-xr-x for directories

We will see permissions in detail later in the day.

Any questions?

Standard filesystem layout

/bin
/boot
/dev
/proc

/etc
/etc/default
/etc/init.d

/home/username

/1lib

/sbin

/ tmp

/jusr

/var

essential binaries
kernel and boot support
device access nodes
pseudo-filesystem with
config/system info
configuration data
package startup defaults
startup scripts

user's “home” directory
essential libraries
essential sysadmin tools
temporary files

programs & appl. data
changing files (logs,
E-mail messages,

queues, ..)

Don't confuse the the “root account” (/root) with the “root” (“/”) partition.

More filesystem details

/usr

/var

/usr/bin
/usr/1lib
/usr/sbin
/usr/share
/usr/src

/usr/local/...

/var/log
/var/mail
/var/run
/var/spool
/var/tmp

binaries

libraries

sysadmin binaries

misc application data
kernel source code

3rd party applications
not installed with apt

log files
mailboxes
process status
queue data files
temporary files

Log files (a few examples)

/var
/var/log
/var/log/apache2
/var/log/apache2/access.log
/var/log/apache3/error.log
/var/log/auth.log
/var/log/boot.log
/var/log/dmesqg
/var/log/kern.log
/var/log/mail.info
/var/log/mail .err
/var/log/mail.log
/var/log/messages
/var/log/mysql
/var/log/syslog

Log file: who & what’s doing what

The most critical place to solve problems

« System messages, including:
- Problems
— Security issues
- Configuration errors
- Access issues

« Service messages, including:
- Same as above

When something does not work...

...Look in your log files first!

Partitioning considerations

» Single large partition or multiple?

» A single partition is flexible, but a rogue
program can fill it up...

* Multiple partitions provides a more “protected”
approach, but you may need to resize later,
on older filesystems, or without a “Volume
Manager”

- |s /var big enough? /tmp?
- How much swap should you define?

Note...

 Partitioning is just a logical division

* |f your hard drive dies, most likely everything will
be lost.

* |f you want data security, then you need to set
up mirroring or RAID with a separate drive.

Remember, “rm —-rf /” on a mirror will erase everything on both
disks ©

Data Security <==> Backup

/dev

Virtual files pointing to hardware or other

/dev/sda = the first harddisk
(SCSI/SATA/SAS or IDE)

Dynamically created /dev entries

e.g. when you plug in a new USB device

pseudo-devices:

/dev/null
/dev/random

Sample Linux File System

®

L | 4 4 L
/mnt I /sys I /bin ‘ /lib ‘

| | §
/root I /etc

A A A .
/boot /home /proc /dev /sbin Ausr
| A T :
General purpose Libraries
The super-user’s
home directory s
Executables
A view of internal
The kernel
image is in here Narelicws ' : ' 1
The kernel's view b =) @
qurator — O
configuration files ,
Special device More More
Users' directories files live here executables libraries
are under here

http://www.tuxradar.com/content/take-linux-filesystem-tour

How Does Linux boot?

The BIOS loads and runs the MBR:

- The Master Boot Record points to a default
partition, or lets you select the boot partition

MBR code then loads the boot loader, such as GRUB

Boot loader reads configuration parameters (/boot)
presents the user with options on how to boot system

kernel is loaded and started, filesystems are mounted,
modules are loaded

init(8) process is started
system daemons are started

http://en.wikipedia.org/wiki/Linux_startup process

Any questions?

Packages & Exercises

We'll reinforce some of these concepts using
exercises...

Right now please connect to your virtual Linux
machine using SSH. Your instructor and
workshop assistants will assist you with this:

- Windows ssh client available at
http://noc.ws.nsrc.org/downloads/putty.exe
- ssh sysadm@pcX.ws.nsrc.org
« User: sysadm
 Host: pcX.ws.nsrc.org
- Accept the SSH key when asked
- Use password given in class
- # exit

Packages & Exercises

We’'ll run a few commands to get started:

¢ 1ls (list files / directories)
* pwd (current working directory)
* man man (manual or help)

Module 2: Command Line Interface

The format of a command

command [options] parameters

“Traditionally, UNIX command-line options consist of a dash,

followed by one or more lowercase letters. The GNU utilities
added a double-dash, followed by a complete word or
compound word.”

Two very typical examples are:
-h

——help

and

-V

——version

Command parameters

The parameter is what the command acts on.
Often there are multiple parameters.

In Unix UPPERCASE and lowercase for both
options and parameters matter.

Spaces are critical

-- help”is wrong.

|

“——help’ is right.

(14

Some command examples

Let's start simple:
Display a list of files:

1ls
Display a list of files in a long listing format:
ls -1

Display a list of all files in a long listing format
with human-readable file sizes:

ls —alh

Some command examples cont.

Some equivalent ways to do “1s -alh”:

1ls —-1ah
ls -1 —-a -h
ls -1 —all —--human—-readable

Note that there is no double-dash option for “-1".
You can figure this out by typing:

man 1s
Or by typing:
ls —--help

Where's the parameter?

We typed the “1s” command with several options,
but no parameter. Do you think “1s” uses a
parameter?

What is the parameter for “1s -1"7
It is “.” -- our current directory.
“ls -1"and "1s -1 .7 are the same.

We'll discuss files and directories later.

A disconcerting Linux feature

If a command executes successfully there is no
output returned from the command execution.
this is nhormal.
That is, if you type:

cp filel fi1le?Z

The result is that you get your command prompt
back. Nothing means success.

Let's give this a try...

A disconcerting Linux feature

Try doing the following on your machine:
S cd [cd = change dir]

S touch filel [touch = create/update]
S cp filel file?2 [cp = copy]

« The “$” indicates the command prompt for a
normal user.

« A"#” usually means you are the root user.

Using pipes

In Unix it is very easy to use the result of
one command as the input for another.

To do this we use the pipe symbol “|". For
example:

l1s -1 /sbin | sort
ls -1 /sbin | sort | more
What will these commands do?

Stopping command output

Stopping commands with continuous output:
Terminate foreground program: CTRL+C

$ ping yahoo.com

PING yahoo.com (67.195.160.76): 56 data bytes

64 bytes from 67.195.160.76: icmp seqg=0 ttl=45 time=221.053 ms
64 bytes from 67.195.160.76: icmp seqg=1 ttl=45 time=224.145 ms

~C € here press CTRL + C

Terminate paging like “less <filename>"

$ less /etc/passwd

sysadm:x:1000:1000:System Administrator,,, :/home/sysadm:/bin/bash
postfix:x:104:113::/var/spool/postfix:/bin/false
mysgl:x:105:115:MySQL Server,,,:/var/lib/mysqgl:/bin/false

(END) € press the “q” key

Proper command line use

The command line in Unix iIs much more
powerful than what you may be used to in
Windows. You can...

...easily edit long commands
...find and recover past commands
...quickly copy and paste commands.

...auto-complete commands using the
tab key (in bash shell).

Edit long commands

i1 Don't touch that keyboard!
” Arrow keys are sloooooow...

Use Home and End instead (ctrl-a, shift-a)
Delete with Backspace not Delete.

Press <ENTER> as soon as the command
IS correct. You do not need to go to the
end of the command.

Use “history | grep string’, then
I NN instead of lots of up-arrows.

Find and recover past
commands

As noted on the previous slide. Use:

S history | grep “command string”
Find command number in resulting list.

Execute the command by typing:
S !'number

S0, to find any command you typed “many”
commands ago you can do:

S history | grep command

Find and recover past
commands

For last few commands use the up-arrow.

Don’t re-type a long command if you just
typed it.

Instead use the up arrow and adjust the
command.

Copy and paste commands

In Unix/Linux once you highlight something it is
already in your copy buffer.

To copy/paste in Linux/Unix do:

« Highlight text with left mouse cursor. It is
now copied (like ctrl-c in Windows).

 Move mouse/cursor where you want (any
window), and press the middle mouse
button. This is paste (like ctrl-v).

In Windows / Mac use the traditional ctrl-c / ctrl-v

Copy and paste commands

Do this!!

Good system administrator é@ g@

— — [—

/]
[
N
L o
LD
~

Lazy Person
Goal State

Don’t try to type a long command if you can
copy / paste it instead.

Auto-complete commands with tab

Very, very, very powerful

“The tab key is good”, “the tab key is my

” 14

friend”, “press the tab key”, “press it again”
- This is your mantra.

Tab works in the bash shell. Note, the root
user might not use the bash shell by
default.

Auto-complete commands with tab

Core concept:

Once you type something unique, press
TAB. If nothing happens, press TAB twice.
If text was unique text will auto-complete.
A command will complete, directory

name, file name, command parameters will
all complete.

If not unique, press TAB twice. All possibilities
will be displayed.

Works with file types based on command!

Viewing Files (part |)

Several ways to view a file:

1. cat <filename>
2. more <filename

3. less <filename>

« cat Is short for conCATenate

* "“less ismore”

Obtaining “help”

To get help explaining commands you can do:

- man <command>
- <command> --help

man stands for “man”ual.
More on “man’
— IMan mnan
More on Linux directory structure:

— man hier

Your mission

Should you choose to accept it...
Pay close attention to options and parameters.

Use “‘man command” or “command --help’ to
figure out how each command works.

Use command line magic to save lots and lots
and lots and lots of time.

A command acts upon its parameters based on
the options you give to the command...

Module 3: Permissions

Goal

Understand the following:

- The Linux / Unix security model

- How a program is allowed to run

- Where user and group information is stored
- Details of file permissions

Users and Groups

Linux understands Users and Groups

A user can belong to several groups

A file can belong to only one user and one
group at a time

A particular user, the superuser “root” has extra
privileges (uid = “0” in /etc/passwd)

Only root can change the ownership of a file

Users and Groups cont.

User information in /etc/passwd

Password infois in /etc/shadow

Group information is in /etc/group
/etc/passwd and /etc/group divide data

9L

fields using :
[etc/passwd:

joeuser:x:1000:1000:Joe User,,, :/home/joeuser:/bin/bash
[etc/group:

Jjoeuser:x:1000:

A program runs...

A program may be run by a user, when the
system starts or by another process.

Before the program can execute the kernel
iInspects several things:

* |s the file containing the program accessible to the user
or group of the process that wants to run it?

* Does the file containing the program permit execution
by that user or group (or anybody)?

* In most cases, while executing, a program inherits the
privileges of the user/process who started it.

A program in detalil

When we type:
ls -1 /usr/bin/top
We'll see:

-rwxr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

What does all this mean?

-r-xr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

File Name

|
|
|
+--- Modification Time/Date

| | |

| | |

| | |

| | |

| | |

| | | e e Size (in bytes

| | |

| | | - Group

| | |

| | - Owner

| |

| fom “link count”

|

F-—— File Permissions
Group

The name of the group that has permissions in addition to the file's owner.
Owner

The name of the user who owns the file.
File Permissions

The first character is the type of file. A "-" indicates a regular (ordinary) file.
"d” indicate a directory. Second set of 3 characters represent the read, write, and

execution rights of the file's owner. Next 3 represent the rights of the file's group, and

the final 3 represent the rights granted to everybody else.

(Example modified from http://www.linuxcommand.org/l1ts0030.php)

Access rights

Files are owned by a user and a group
(ownership)

Files have permissions for the user, the group,
and other

“other” permission is often referred to as “world

The permissions are Read, Write and Execute
(R, W, X)

The user who owns a file is always allowed to
change its permissions

b

Some special cases

When looking at the output from “1s -1 in the
first column you might see:

d directory

regular file

symbolic link

Unlix domalin socket
named pipe

character device file
= block device file

OQT n — |
I

Some special cases cont

In the Owner, Group and other columns you
might see:

s = setuid 'when in Owner column]
s = setgid 'when in Group column]
t = sticky bit when at end]

Some References

http://www.tuxfiles.org/linuxhelp/filepermissions.html

http://www.cs.uregina.ca/Links/class-info/330/Linux/linux.html
http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD Basics.html

File permissions

There are two ways to set permissions when
using the chmod command:

Symbolic mode:

testfile has permissions of ~-r--r--r—-

*

Uy & 9
S chmod g+x testfile ==> -r—--r—-xXr—-
S chmod u+wx testfile ==> -rWXI—-XI—-
$ chmod ug-x testfile ==> -rw--r--r--

U=user, G=group, O=other (world)

File permissions cont.

Absolute mode:

We use octal (base eight) values represented like this:

Letter Permission Value

R read 4
W write 2
X execute 1
- none 0

For each column, User, Group or Other you can set
values from O to 7. Here is what each means:

0= --- 1= -—-x 2= -w- 3= -wx

4= r-- 5= r-x 6= rw- /= rwx

File permissions cont.

Numeric mode cont:

Example index.html file with typical permission values:

S chmod 755 index.html

S 1ls -1 index.html
—-rwxr-xr-x 1 root wheel 0 May 24 06:20 index.html

S chmod 644 index.html

S 1ls -1 index.html
-rw-r—--r—-- 1 root wheel 0 May 24 06:20 index.html

Inherited permissions

Two critical points:

1.The permissions of a directory affect whether
someone can see its contents or add or
remove files in it.

2.The permissions on a file determine what a
user can do to the data in the file.

Example:

If you don't have write permission for a directory, then
you can't delete a file in the directory. If you have write
access to the file you can update the data in the file.

Conclusion

To reinforce these concepts let's do some
exercises.

In addition, a very nice reference on using the
chmod command is:

An Introduction to Unix Permissions -- Part Two
By Dru Lavigne (note, this is for FreeBSD)

http://www.onlamp.com/pub/a/bsd/2000/09/13/FreeBSD Basics.html

Module 4: Editors

Goals

. Be able to edit a file using vi

« Use some of vi's more advanced
features

« Begin to understand the “language” of
configuration files

. Use alternate editors: ee,
xemacs, gedit, etc.

vi Philosophy

. It's available!

. Wait, what was that”? Oh yeah, it's
available!

. It's has some very powerful features.

o It's ubiquitous in UNIX and Linux
(visudo, vipw, vigr, etc.)

« Not that hard to learn after initial
learning curve.

 Impress your friends and family with
your arcane knowledge of computers.

Why is vi “so hard to use”?

Like all things it's not really — once you are
used to how it works.

The critical vi concept:
1. vi has two modes

2. These modes are insert and
command

Let's see how we use these...

vi command and insert modes

Swapping modes

- When you open a file in vi you are in
command mode by default.

- If you wish to edit the file you need to switch
to insert mode first.

- To exit insert mode press the ESCape key.

- If you get used to this concept you are
halfway done to becoming a competent vi
user.

vi iInsert mode

Two common ways to enter insert mode
upon opening a file include:

1L

- Press the “i” key to start entering text
directly after your cursor.

(1Pl

- Press the "0" key to add a new line below
you cursor and to start adding text on the
new line.

- Remember, to exit insert mode press the
ESCape key at any time.

vi command mode

Many, many commands in vi, but some
of the most common and useful are:

(17 1)

- Press “x” to delete a character at a time.
- Press “dd” quickly to press the line you are on.

- Press “/”, and text to search for and press
<ENTER>.

11 b

« Press “n” to find the next occurrence of text.

« Press “N” to find previous occurrences of
text.

Saving a file or “How to exit vi”

1. In vi press the ESCape key to verify you are in
command mode.

2. Depending on what you want to do press:
« :Ww — write the file to disk
« :wq — write the file to disk, then quit
e :q — quit the file (only works if no changes)
. :q! — quit and lose any changes made

. :w! — override r/o file permission if you are
owner or root and write the file to disk.

:w!lq — override r/o file permission if you are
owner or root and write the file to disk
and quit.

Speed-Up your config file editing!

1. In vi press the ESCape key to verify you are in
command mode.

2. To search for the first occurrence of something:
« /string — press <ENTER>
e “n” — press “n” for each following occurrence
o “N” — press “N” for each previous occurrence
3. To replace all occurrences of a string in a file:
e :3s/o0ld string/new string/g
4. To replace all occurrences of a string in a file:
e :%s/o0ld string/new string/gc

Speed things up some more!

1. In vi press the ESCape key to verify you are in
command mode.

2. Go directly to a specific line number

« :NN — press <ENTER>. If NN=100, go to line 100
3. Go to start/end of a line

. press Home or press End on your keyboard
4. Go to top/bottom of a file:

« press ctrl-Home or press ctrl-End on your keyboard
5. Undo the last change you made (in command mode)

« press “u”

Configuration file patterns

There are patterns to how configuration
files work:

« he most common comment
character is “#".

. After that you'll see “/* */" or “//I".

 There are a few others, but they are
less common.

Editing configuration files cont.

Some configuration files have lots of
comments and few directives. Others are
the opposite.

Blocks of configuration may be indicated in
a programmatic manner, i.e..

<VirtualHost *>

<SubSection>
directive
directive
</SubSection>
</VirtualHost>

Editing configuration files cont.

Another standard is to do the following:

comment
comment

default setting=off

To change the default do:

default setting=on

Editing configuration files cont.

Things to watch out for:
« Spaces
« Quotes and single quotes: “directive” or
'directive’

« Caps or CamelCase syntax
 Localhost="myhost”
 LocalHost="myhost”

o Line end indicator (: or ;)

« New-line or continuation character “\".

Other editors

ee
- ESC brings up the editor menu

- Cursors work as you expect

jed

- F10 brings up the editor menu

- Cursors work as you expect

joe

- Ctrl-k-h brings up the editor menu
- Ctrl-c aborts

- Cursors work as you expect

Conclusion

vi's most confusing feature is that it works in
two modes and you must switch between
them.

Questions?

Module 5: System Admin Ubuntu

Goal

« Core commands to admin a system

» Understanding Ubuntu-specific methods
- Naming conventions
- Release conventions (Server, Desktop and LTS)
— Other flavors
— The Debian way
- Packaging system (how software is installed)
- Meta-packages
- Keeping up-to-date
- Stopping and starting services
- Additional system administration commands

Ubuntu Timeline

Version Code name Release date Supported untl e Hoaning
Desktops Servers Red Release no longer supported

4.10 Warty Warthog | 20 October 2004 30 April 2006 Green Release still supported
5.04 Hoary Hedgehog = 8 April 2005 31 October 2006 Blue Future release
5.10 Breezy Badger 13 October 2005 13 April 2007

6.06 LTS Dapper Drake 1 June 2006 14 July 2009 1 June 2011
6.10 Edgy Eft 26 October 2006 25 April 2008
7.04 Feisty Fawn 19 April 2007 19 October 2008
7.10 Gutsy Gibbon | 18 October 2007 18 April 2009

8.04 LTS | Hardy Heron 24 April 2008 12 May 2011 April 2013
8.10 Intrepid Ibex | 30 October 2008 30 April 2010
9.04 Jaunty Jackalope 23 April 2009 23 October 2010
9.10 Karmic Koala | 29 October 2009 30 April 2011

10.04 LTS Lucid Lynx 29 April 2010 = April 2013 April 2015
10.10 Maverick Meerkat 10 October 2010 April 2012
11.04 Natty Narwhal 28 April 2011 October 2012
11.10 Oneiric Ocelot | 13 October 2011 April 2013

12.04 LTS| Precise Pangolin |26 April 2012[134] April 20171120]

The Debian Way

Ubuntu is built from Debian repositories and uses
the Debian package management system.

“Debian is a cautious and strict Linux distribution”

- Long release cycle

- Extremely well-tested

- No closed source software

- Beta version of Debian quite stable
- New versions very thoroughly tested

— Latest versions of software often not available in main branch as
they are not considered stable or safe enough.

- There are pluses and minuses to this approach.

Ubuntu View of the Debian Way

Potentially heretical slide ©...

- Debian software repository concept to classify software.
- Use the Debian package management system.

— Ubuntu allows closed source software and drivers.

- Fast release cycle, long support (2 to 5 years)

- Ubuntu has both desktop and server versions

- “Ubuntu Project” is supported by Mark Shuttleworth.

- Keep systems current automatically (optional)

- Support latest releases of major Open Source software
projects (Firefox, Thunderbird, Ghome, OpenOffice, Xorg).
Debian is more conservative.

Debian/Ubuntu Unique Items

Software management

Command Line

* dpkg
- dpkg --get-selections, dpkg-reconfigure, dpkg-query
° a;rt

- apt-cache, apt-cache policy, apt-cache search apt-get,
apt-get install, apt-get remove, apt-get purge, apt-get
clean

- meta-packages (build-essentials, ubuntu-desktop)
» repositories — Controlled by /etc/apt/sources.list
e aptitude

- aptitude search, aptitude clean, aptitude remove, aptitude
purge

Using apt

After initial install general cycle is:

l.apt-get update
2.apt-get upgrade

- Repeat 1. If new packages, repeat 2.

- Reboot only if new kernel image is installed.

- Services are restarted if updated.

- During install you can tell Ubuntu to automate this process.

- Desktop users generally use synaptic or Ubuntu App Centre to
do this.

Services

Startup scripts

In /etc/init.d/ (System V)
In /etc/init/ (Ubuntu 12.04 LTS and Upstart)

NOTE! Upon install services run!

Controlling services

 update-rc.d (default method)
« Stop/Start/Restart/Reload/Status Services

service <Service> <Action>

or, “old school’

/etc/init.d/<service> <action>

Runlevels

As Linux boots it executes service startup
using links.

Based on your “runlevel” determines what
services will start.

Traditional levels are used like this:
- runlevel 1: single user mode (emergency mode)
- runlevel 2: multi-user mode (No Desktop)
- runlevel 5: multi-user mode (Desktop)

With Ubuntu We Actually Do...

What happens at each runlevel?

* init 1 =» Links in /etc/rc1.d are executed.
Login as root user only.
Minimal file system access.

e init 2-5 = Links in /etc/rc5.d are executed.
Gui is started if installed.

Day-to-day working state.
- Ubuntu runs at “runlevel 2”
— Other Linux, with Desktop, run at “runlevel 5”
- This is largely semantics

Special Runlevels

Runlevel 0: Halt the system
Runlevel 6: Reboot the system

Runlevel 1: Single user mode. No network.
No services. System Recovery.

You must be at the machine console or have Out-of-Band
(OoB) access to your machine to use Runlevel 1.

Packages vs. Source

Make and GCC
* Not installed by default. Why?
« 30,000'ish packages are available

 Install from source is “not clean” in the Ubuntu
world.

* To install ability to compile C code:

apt-get install build-essential

Root account Access

* Use of the root account is discouraged.

* sudo Is used to access root privileges
from general user account instead.

* You can get around this very easily.

Should you run as root?

Your decision.

Accessing root account

Set root user password:
* Login as general user
* sudo bash (Opens a root shell in bash)
e passwd (Set a root password)

Should you do this?

Security hole!

« Ubuntu allows roof user access via SSH by
default. Setting the root user password opens
exposes this vulnerabillity.

Upgrading Ubuntu

* You can do (as root):

apt-get install update-manager-core
do-release-upgrade

to move between major and minor releases.

« Package sources in /etc/apt/sources.list
determine available packages and from
where to download.

Meta Packages

 Annoying to new users
* Provide all packages for subsystems
 Initial documentation

https://help.ubuntu.com/community/MetaPackages

Examples include:
build-essential (libc, g++, gcc, make)
ubuntu-desktop (Xorg, gnome)
xserver-xorg-video-intel

Installing a minimal Gnome desktop

apt-get install --no-install-recommends ubuntu-desktop

See what’s running

Check for a process by name

—PS auxwww | grep apache
sysadm@pcl@zZ:~$ ps auxwww | grep apache
root 1029 0.0 24.5 137524 125184 ? Ss ©1:29 0:02 /usr/sbin/apacheZ -k start
ww-data 1062 ©.0 23.1 134788 117836 ? S 01:29 0:00 /usr/sbin/apache2 -k start
ww-data 1087 0.0 23.8 414236 121236 ? S1 ©1:289 0:00 /usr/sbin/apacheZ -k start
www-data 1088 0.0 23.8 414236 121240 7 S1 ©01:29 ©0:00 /usr/sbin/apache2 -k start

sysadm 1426 0.0 0.1 3320 804 ttyse S+ ©2:40 ©:00 grep --color=auto apache

Stop the process by PID (Process ID). From above listing:
— sudo kill 1029 (why this one?)
— Sudo kill -9 1029 (force stop if hung)

sysadm@pcl@z:~$ ps auxwww | grep apache
sysadm 1430 0.0 ©.1 3320 808 ttySe S+ ©2:46 0:00 grep --color=auto apache

Viewing files revisited

Sometimes files are viewed through a pager

7 13 LA 11

program (“more”, “less”, “cat”). Examples:
man sudo

less /usr/local/etc/nagios/nagios.cfg-sample

« Space bar for next page
* “b" to go backwards

* °q" to quit
 “/” and a pattern (/text) to search

Kinda looks like vi, no?
“less IS more”

Troubleshooting: Lodfiles

Log files are critical to solve problems. They
reside (largely) in /var/log/

Some popular log files include:

/var/log/messages
/var/log/apache2/error.log

/var/log/mail.log

/etc/namedb/log/* (later in the week)

To view the last entry in a log file:
tail /var/log/messages
To view new entries as they happen:

tail —-f /var/log/messages

There's More

But, hopefully enough to get us started...
Some Resources

http://www.ubuntu.com

http://ubuntuforums.org

http://www.debian.org

http://ubuntuguide.org
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Ubuntu_(Linux_distribution)

GIYF (Google Is Your Friend)

Questions

