Linux System Administration and IP Services
TERNET 2012

Exercises: Permissions

Notes

* Commands preceded with "$" imply that you should execute the command as
a general user - not as root.

* Commands preceded with "#" imply that you should be working as root with
"sudo"

* Commands with more specific command lines (e.g. "RTR-GW>" or "mysql>")
imply that you are executing commands on remote equipment, or within
another program.

REFERENCE

If you look at files in a directory using "ls -al" you will see the
permissions for each file and directories. Here is an example:

drwxrwxr-x 3 hervey hervey 4096 Feb 25 09:49 directory
-rwxr--r-- 12 hervey hervey 4096 Feb 16 05:02 file

The left column is important. You can view it like this:

Type User Group Other Links owner group size date hour name
d rwx rwx r-x 3 hervey hervey 4096 Feb 25 ©@9:49 directory
- rwx r r 12 hervey hervey 4096 Feb 16 05:02 file

So, the directory has r (read), w (write), x (execute) access for the
User and Group. For Other it has r (read) and x (execute) access. The
file has read/write/execute access for User and read only access for
everyone else (Group and Other).

To change permissions you use the "chmod" command. chmod uses a base
eight (octal) system to configure permissions. Or, you can use an
alternate form to specify permissions by column (User/Group/Other) at a
time.

Permissions have values like this:
Letter Permission Value

R read 4
W write 2
X execute 1
- none 0

Thus you can give permissions to a file using the sum of the values for
each permission you wish to give for each column. Here is an example:

Letter Permission Value

-—- none 0

--X execute 1
-W- write only (rarely used) 2
-WX write and execute (rare) 3
r-- read only 4
r-x read and execute 5
rw- read and write 6
rwx read, write, and execute 7

This is just one column. Since we have three areas of permissions (User,
Group, Other), it looks like this will all 3 sets:

Permissions
_r‘W _______
-rw-r--r--
-rW-rw-rw-
-PWX-----~-
-PWXP=XPI-X
- PWX WX WX
-rWX--X--X
drwx------

drwxr-xr-x

drwx--x--x

Numeric
equivalent

600
644

666

700

755

7

711

700

755

711

Description

User has read & execute permission.

User has read & execute.

Group and Other have read permission.

Everyone (User, Group, Other) have read & write
permission (dangerous?)

User has read, write, & execute permission.

User has read, write, & execute permission.

Rest of the world (Other) has read & execute
permission (typical for web pages or 644).
Everyone has full access (read, write, execute).
User has read, write, execute permission.

Group and world have execute permission.

User only has access to this directory.
Directories require execute permission to access.
User has full access to directory. Everyone else
can see the directory.

Everyone can list files in the directory, but Group
and Other need to know a filename to do this.

1.) CHANGING FILE PERMISSIONS

If you are logged in as the root user on your machine please do the following:

exit

To become a normal user, like sysadm. Your prompt should change to include a “$” sign.

$

Once logged in we'll create a file and set permissions on it in various ways.

$ cd

$ echo “test file” > working.txt
$ chmod 444 working.txt

What does that look like?

$ 1s -lah working.txt

In spite of the fact that the file does not have write permission
for the owner, the owner can still change the file's permissions so
that they can make it possible to write to it.

$ chmod 644 working.txt
Or, you can do this by using this form of chmod:

$ chmod u+w working.txt

Note: when you type these command you should be able to use the tab key for

command completion once you've typed the "w" in the file name "working.txt" -
This will save you quite a bit of time. It's highly recommended! :-)

To remove the read permission for the user on a file you would do
$ chmod u-r working.txt

Or, you can do something like:
$ chmod 344 working.txt

You probably noticed that you can use the (minus) sign to remove
permissions from a file. Try reading your file:

$ cat working.txt

What happened? Uh oh! You can't read your file. Please make the file readable
by you !

$ chmod ??? working.txt
Ask your instructor for help if you don't know what to put in for
“??2?7”. Or, look at your reference at the start of these exercises to
figure this out.
2. PROGRAM EXECUTION, PRIVILEGES & SUDO
As a general user you can see that there is a file called “/etc/shadow”:
$ 1s /etc/shadow
But, you cannot see its contents:
$ less /etc/shadow
What permissions does this file have? Use the examples above to figure this out. Fill

in the blanks below once you know the permissions. We've filled in one item to get you
stated:

As a general user, however, you can see the /etc/shadow file if you do the following:
$ sudo less /etc/shadow
What is sudo? Read about it:

$ man sudo

3. CREATE A NEW GROUP
$ sudo groupadd teaml
Prove that it really exists:
$ grep teaml /etc/group
Now let's place our sysadm user in this new group:
$ whoami
Just to be sure we really are the "sysadm" user right now:
$ groups
You can see that sysadm is a member of the groups:
sysadm adm cdrom plugdev lpadmin sambashare admin
Let's add our user to the teaml group - the '-a' is important!

$ sudo usermod -a -G teaml sysadm

You won't be able to use your new group until you have logged in and out from
your account, or have simulated this process by doing this:

$ su - sysadm

(type your own password)
Now try typing:

$ groups
You should see something like this:

sysadm adm cdrom plugdev lpadmin sambashare admin teaml
sysadm is now a member of the teaml group.

Using groups like this can be useful for working in teams on a project,
giving access to web directories, etc.

4. GIVE GROUP ACCESS TO A FILE
Do the following:
$ cd
$ echo “This is our group test file” > group.txt
$ chgrp teaml group.txt
What permissions does the file have now?
$ 1s -1 group.txt
You should see something like:

-rw-r--r-- 1 sysadm teaml 28 2012-04-16 01:32 group.txt

How would you give members of the group teaml read/write access to this
file? Before you look below try solving this on your own.

We'll use the numeric chmod functionality.
$ chmod 664 group.txt
Alternatively you could have typed:
$ chmod g+w group.txt
Look at the file's permissions:
$ 1s -1 group.txt
You should see something like:
-rw-rw-r-- 1 sysadm teaml 28 2012-04-16 01:32 group.txt
By the way.. Did you remember to just type the "g" in the filename "group.txt"
and then use the tab key to save time in the exercises above? If not, try using
tab in upcoming exercises. It's really worth it!
5. MAKE A FILE EXECUTABLE
Do this exercise as the sysadm user.

$ cd
$ touch hello

Now add a single line to the file that reads:
echo 'Hello, world!'’

$ echo "echo 'Hello, world'" > hello

NOTE: We'll use file editors for operations like this after our next session.
Let's try to run this file:

$./hello
You'll probably see something like:

bash: ./hello: Permission denied

This implies that the file is not executable. We need to set the file's permission to be
executable by our sysadm user. How would you do this?

$ chmod 755 hello
would work. Now try running the file:
$./hello
You should see ...
Hello, world!
. on your screen.
Congratulations: you've just written your first script!
Now set your hello file to be readable by everyone, NOT executable by
the sysadm user, and executable by the Group and by Other. Can you
figure out how to do this on your own?
Look at the file's permissions to get started:
$ 1s -1 hello
-rwxr-xr-x 1 sysadm sysadm 20 2012-04-16 01:38 hello
You want the permission to be:
-rw-r-xr-x 1 sysadm sysadm 20 2012-04-16 01:38 hello
There are several ways you can do this with the chmod command.
Once you have set the permissions like this, what happens if you now type?

$./hello

Why does this happen? If you execute the file as a different user it
will still work! Does this seem odd? (Hint: think “left to right”)

You can get the file to execute, for example, by typing:

$ sudo ./hello

Now set the file back so that the sysadm can execute it. Verify that this
works.

CONCLUSION
What's the “./” about?

In our example above when you typed “hello” the file “hello”

is in your home directory. Your home directory is not in your default
path as configured for the bash shell. Thus, bash will not find the
hello file, even though it's in the same directory where you are typing
the command. By using “./” before the filename we tell bash to
explicitly look in the same directory for the file to execute.

