Shell Scripting

System Administration and IP
Services Workshop

These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license
(http://creativecommons.org/licenses/by-nc/3.0/)

Why

» Scheduled Tasks
* Repetitive sequences
* Boot scripts

When not to use scripting

» Resource-intensive tasks, especially where
speed is a factor

 Complex applications, where structured
programming IS a necessity

* Need direct access to system hardware
* Proprietary, closed-source applications

Sample repetitive tasks

 Cleanup
« Run as root, of course.

* Do notrun these commands: demo
only!

cd /var/log

cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up.”

H= H= FH= I

* You can put these commands in a file
and run bash filename

she-bang

« #! and the shell (first line only)
« chmod a+x (remember the permissions)
 Example: put the following text in hello.sh

#!/bin/bash
echo Hello World

$ chmod a+x hello.sh
$./hello.sh (remember $PATH)

variables

« Variable is a “container” of data. Some
variables already exist in your

“environment” like $PATH and $PROMPT

« Shell substitutes any token that starts with $
with the contents of the variable of that
name

» Variable can be created using
VAR=something — some shells require the
keyword “set” to make it persist, others
need “export”

Sample special variables

S echo SPATH
the shell searches PATH for programs if you do not type them with an absolute path

S echo pwd
S echo $(pwd)

the shell runs the command in between “$(“and “)” and puts the result on the
command line

S echo S§?

When a process ends, it can leave an “exit code ” which is an integer which you can
check. If the exit code is zero then usually it exited successfully. Non zero usually
indicates an error.

sample repetitive tasks revisited

#!/bin/bash # Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.

Insert code here to print error message and exit if not root.

LOG DIR=/var/log # Variables are better than hard-coded values.
cd $LOG DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up.’

exit # The right and proper method of "exiting" from a script.

Conditionals

If expression then statement

If expression then statement1 else statement?2.

If expression then statement1 else if
expression2 then statement2 else statement3

Bash conditional syntax

#!/bin/bash
if ["foo" = "foo"]; then

echo expression evaluated as true
fi

#!/bin/bash
if ["foo" = "foo"]; then

echo expression evaluated as true
else

echo expression evaluated as false
fi

Loops

» for loop lets you iterate over a series of
'words' within a string.

* while executes a piece of code if the control
expression is true, and only stops when it is
false

* until loop is almost equal to the while loop,
except that the code is executed while the
control expression evaluates to false.

Sample syntax

#!/bin/bash

for 1 in $(1ls); do
echo item: $i

done

#!/bin/bash
COUNTER=0
while [SCOUNTER -1t 10]; do

echo The counter is SCOUNTER
let COUNTER=COUNTER+1
done

#!/bin/bash

COUNTER=20

until [$COUNTER -1t 10]; do
echo COUNTER S$SCOUNTER
let COUNTER-=1

done

Practice

Write a shell script to print the disk usage every
5 seconds.

Hint: sleep Nis a command which will
basically put the prompt/program to sleep for
N seconds

Hint2: in any conditional, you can say “true”
or “false’ to force it to always evaluate like
that.

Extra

Programming (say in C) builds on similar
concepts.

Source text is COMPILED into binary
machine code. Why?

hello world (c style)

Edit hello.c and put the following text

#include <stdio.h>
int main(){

printf(“Hello World\n");
return 0;

}

Type gcc -o hello hello.c
Type ./hello ; echo §$?
Change the return O to return 42
Compile it again,

Run ./hello; echo $?

