BGP Best Current Practices

ISP Training Workshops

Configuring BGP

Where do we start?

IOS Good Practices

ISPs should start off with the following BGP commands as a basic template:

```
router bgp 64511 
Replace with public ASN bgp deterministic-med distance bgp 200 200 200 
Make ebgp and ibgp distance the same no auto-summary
```

If supporting more than just IPv4 unicast neighbours

no bgp default ipv4-unicast

is also very important and required

Cisco IOS Good Practices

- BGP in Cisco IOS is permissive by default
- Configuring BGP peering without using filters means:
 - All best paths on the local router are passed to the neighbour
 - All routes announced by the neighbour are received by the local router
 - Can have disastrous consequences
- Good practice is to ensure that each eBGP neighbour has inbound and outbound filter applied:

```
router bgp 64511
neighbor 1.2.3.4 remote-as 64510
neighbor 1.2.3.4 prefix-list as64510-in in
neighbor 1.2.3.4 prefix-list as64510-out out
```

What is BGP for??

What is an IGP not for?

BGP versus OSPF/ISIS

- Internal Routing Protocols (IGPs)
 - examples are ISIS and OSPF
 - used for carrying infrastructure addresses
 - NOT used for carrying Internet prefixes or customer prefixes
 - design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
- □ iBGP used to carry
 - some/all Internet prefixes across backbone
 - customer prefixes
- eBGP used to
 - exchange prefixes with other ASes
 - implement routing policy

BGP versus OSPF/ISIS

- □ DO NOT:
 - distribute BGP prefixes into an IGP
 - distribute IGP routes into BGP
 - use an IGP to carry customer prefixes
- **□ YOUR NETWORK WILL NOT SCALE**

Aggregation

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of this aggregate may be:
 - Used internally in the ISP network
 - Announced to other ASes to aid with multihoming
- Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table
 - Note: Same is happening for /48s with IPv6

Configuring Aggregation – Cisco IOS

- ISP has 101.10.0.0/19 address block
- To put into BGP as an aggregate:

```
router bgp 64511
network 101.10.0.0 mask 255.255.224.0
ip route 101.10.0.0 255.255.224.0 null0
```

- The static route is a "pull up" route
 - more specific prefixes within this address block ensure connectivity to ISP's customers
 - "longest match lookup

Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless for traffic engineering
 - See BGP Multihoming presentations
- Aggregate should be generated internally
 - Not on the network borders!

Announcing Aggregate – Cisco IOS

Configuration Example

```
router bgp 64511
  network 101.10.0.0 mask 255.255.224.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list out-filter out
!
ip route 101.10.0.0 255.255.224.0 null0
!
ip prefix-list out-filter permit 101.10.0.0/19
ip prefix-list out-filter deny 0.0.0.0/0 le 32
```

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries publish their minimum allocation size
 - Anything from a /20 to a /22 depending on RIR
 - Different sizes for different address blocks
- No real reason to see anything longer than a /22 prefix in the Internet
 - BUT there are currently (June 2012) >216000 /24s!
- But: APNIC changed (Oct 2010) its minimum allocation size on all blocks to /24
 - IPv4 run-out is starting to have an impact

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

- Customer link goes down
 - Their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- Their ISP doesn't aggregate its /19 network block
 - /23 network withdrawal announced to peers
 - starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

- Customer link returns
 - Their /23 network is now visible to their ISP
 - Their /23 network is readvertised to peers
 - Starts rippling through Internet
 - Load on Internet backbone routers as network is reinserted into routing table
 - Some ISP's suppress the flaps
 - Internet may take 10-20 min or longer to be visible
 - Where is the Quality of Service???

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down
 - their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 - no BGP hold down problems
 - no BGP propagation delays
 - no damping by other ISPs

- Customer link returns
- Their /23 network is visible again
 - The /23 is re-injected into AS100's iBGP
- The whole Internet becomes visible immediately
- Customer has Quality of Service perception

Aggregation – Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - Reduces size of routing table
 - Reduces routing churn
 - Improves Internet QoS for everyone
- Bad example is what too many still do!
 - Why? Lack of knowledge?
 - Laziness?

Separation of iBGP and eBGP

- Many ISPs do not understand the importance of separating iBGP and eBGP
 - iBGP is where all customer prefixes are carried
 - eBGP is used for announcing aggregate to Internet and for Traffic Engineering
- Do NOT do traffic engineering with customer originated iBGP prefixes
 - Leads to instability similar to that mentioned in the earlier bad example
 - Even though aggregate is announced, a flapping subprefix will lead to instability for the customer concerned
- Generate traffic engineering prefixes on the Border Router

The Internet Today (June 2012)

Current Internet Routing Table Statistics

BGP Routing Table Entries	412487
Prefixes after maximum aggregation	174439
Unique prefixes in Internet	200548
Prefixes smaller than registry alloc	175889
/24s announced	215907
ASes in use	41153

Efforts to improve aggregation

- The CIDR Report
 - Initiated and operated for many years by Tony Bates
 - Now combined with Geoff Huston's routing analysis
 - www.cidr-report.org
 - (covers both IPv4 and IPv6 BGP tables)
 - Results e-mailed on a weekly basis to most operations lists around the world
 - Lists the top 30 service providers who could do better at aggregating
- RIPE Routing WG aggregation recommendation
 - RIPE-399 www.ripe.net/ripe/docs/ripe-399.html

Efforts to Improve Aggregation The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

Plot: AS count

Plot: Average announcements per origin AS Report: ASes ordered by originating address span Report: ASes ordered by transit address span

No.31, Jin-rong Street

Report: Autonomous System number-to-name mapping (from Registry WHOIS data)

Importance of Aggregation

- Size of routing table
 - Router Memory is not so much of a problem as it was in the 1990s
 - Routers can be specified to carry 1 million+ prefixes
- Convergence of the Routing System
 - This is a problem
 - Bigger table takes longer for CPU to process
 - BGP updates take longer to deal with
 - BGP Instability Report tracks routing system update activity
 - bgpupdates.potaroo.net/instability/bgpupd.html

Receiving Prefixes

Receiving Prefixes

- There are three scenarios for receiving prefixes from other ASNs
 - Customer talking BGP
 - Peer talking BGP
 - Upstream/Transit talking BGP
- Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:
 - Check in the five RIR databases to see if this address space really has been assigned to the customer
 - The tool: whois -h jwhois.apnic.net x.x.x.0/24
 - (jwhois queries all RIR databases)

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h whois.apnic.net 202.12.29.0
```

inetnum: 202.12.28.0 - 202.12.29.255

netname: APNIC-AP

descr: Asia Pacific Network Information Centre

descr: Regional Internet Registry for the Asia-Pacific

descr: 6 Cordelia Street

descr: South Brisbane, QLD 4101

descr: Australia

country: AU

admin-c: AIC1-AP Portable – means its an

tech-c: NO4-AP assignment to the customer, the customer can announce it to you

mnt-irt: IRT-APNIC-AP

changed: hm-changed@apnic.net

status: ASSIGNED PORTABLE

changed: hm-changed@apnic.net 20110309

source: APNIC

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h whois.ripe.net 193.128.0.0
```

inetnum: 193.128.0.0 - 193.133.255.255

netname: UK-PIPEX-193-128-133

descr: Verizon UK Limited

country: GB

org: ORG-UA24-RIPE

admin-c: WERT1-RIPE

tech-c: UPHM1-RIPE

status: ALLOCATED UNSPECIFIED

remarks: Please send abuse notification to abuse@uk.uu.net

mnt-by: RIPE-NCC-HM-MNT

mnt-lower: AS1849-MNT mnt-routes: AS1849-MNT

mnt-routes: WCOM-EMEA-RICE-MNT

mnt-irt: IRT-MCI-GB

source: RIPE # Filtered

34

ALLOCATED - means that this is

space and can only be announced by the ISP holding the allocation

Provider Aggregatable address

(in this case Verizon UK)

Receiving Prefixes from customer: Cisco IOS

- For Example:
 - downstream has 100.50.0.0/20 block
 - should only announce this to upstreams
 - upstreams should only accept this from them
- Configuration on upstream

```
router bgp 100
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list customer in
!
ip prefix-list customer permit 100.50.0.0/20
```

Receiving Prefixes: From Peers

- A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table
 - Prefixes you accept from a peer are only those they have indicated they will announce
 - Prefixes you announce to your peer are only those you have indicated you will announce

Receiving Prefixes: From Peers

- Agreeing what each will announce to the other:
 - Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

 Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

www.isc.org/sw/IRRToolSet/

Receiving Prefixes from peer: Cisco IOS

- For Example:
 - Peer has 220.50.0.0/16, 61.237.64.0/18 and 81.250.128.0/17 address blocks
- Configuration on local router

```
router bgp 100
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list my-peer in
!
ip prefix-list my-peer permit 220.50.0.0/16
ip prefix-list my-peer permit 61.237.64.0/18
ip prefix-list my-peer permit 81.250.128.0/17
ip prefix-list my-peer deny 0.0.0.0/0 le 32
```

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless really necessary
 - Traffic Engineering see BGP Multihoming presentations
- Ask upstream/transit provider to either:
 - originate a default-routeOR
 - announce one prefix you can use as default

Downstream Router Configuration

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list infilter in
neighbor 101.5.7.1 prefix-list outfilter out
!
ip prefix-list infilter permit 0.0.0.0/0
!
ip prefix-list outfilter permit 101.10.0.0/19
```

Upstream Router Configuration

```
router bgp 101
neighbor 101.5.7.2 remote-as 100
neighbor 101.5.7.2 default-originate
neighbor 101.5.7.2 prefix-list cust-in in
neighbor 101.5.7.2 prefix-list cust-out out
!
ip prefix-list cust-in permit 101.10.0.0/19
!
ip prefix-list cust-out permit 0.0.0.0/0
```

- If necessary to receive prefixes from any provider, care is required.
 - Don't accept default (unless you need it)
 - Don't accept your own prefixes
- □ For IPv4:
 - Don't accept private (RFC1918) and certain special use prefixes:

http://www.rfc-editor.org/rfc/rfc5735.txt

- Don't accept prefixes longer than /24 (?)
- □ For IPv6:
 - Don't accept certain special use prefixes: http://www.rfc-editor.org/rfc/rfc5156.txt
 - Don't accept prefixes longer than /48 (?)

- Check Team Cymru's list of "bogons" www.team-cymru.org/Services/Bogons/http.html
- For IPv4 also consult: www.rfc-editor.org/rfc/rfc6441.txt
- For IPv6 also consult: www.space.net/~gert/RIPE/ipv6-filters.html
- Bogon Route Server:

www.team-cymru.org/Services/Bogons/routeserver.html

 Supplies a BGP feed (IPv4 and/or IPv6) of address blocks which should not appear in the BGP table

Receiving IPv4 Prefixes

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list in-filter in
ip prefix-list in-filter deny 0.0.0.0/0
                                                    ! Default
ip prefix-list in-filter deny 0.0.0.0/8 le 32
                                                    ! Network Zero
ip prefix-list in-filter deny 10.0.0.0/8 le 32
                                                    ! RFC1918
ip prefix-list in-filter deny 100.64.0.0/10 le 32
                                                    ! RFC6598 shared address
ip prefix-list in-filter deny 101.10.0.0/19 le 32
                                                    ! Local prefix
ip prefix-list in-filter deny 127.0.0.0/8 le 32
                                                    ! Loopback
ip prefix-list in-filter deny 169.254.0.0/16 le 32
                                                    ! Auto-config
ip prefix-list in-filter deny 172.16.0.0/12 le 32
                                                    ! RFC1918
ip prefix-list in-filter deny 192.0.2.0/24 le 32
                                                      TEST1
ip prefix-list in-filter deny 192.168.0.0/16 le 32
                                                      RFC1918
ip prefix-list in-filter deny 198.18.0.0/15 le 32
                                                    ! Benchmarking
ip prefix-list in-filter deny 198.51.100.0/24 le 32! TEST2
ip prefix-list in-filter deny 203.0.113.0/24 le 32 !
                                                      TEST3
ip prefix-list in-filter deny 224.0.0.0/3 le 32
                                                    ! Multicast
ip prefix-list in-filter deny 0.0.0.0/0 ge 25
                                                    ! Prefixes >/24
ip prefix-list in-filter permit 0.0.0.0/0 le 32
```

Receiving IPv6 Prefixes

```
router bgp 100
network 2020:3030::/32
neighbor 2020:3030::1 remote-as 101
neighbor 2020:3030::1 prefix-list v6in-filter in
ipv6 prefix-list v6in-filter permit 2001::/32
                                                            ! Teredo
ipv6 prefix-list v6in-filter deny 2001::/32 le 128
                                                            ! Teredo subnets
ipv6 prefix-list v6in-filter deny 2001:db8::/32 le 128
                                                            ! Documentation
ipv6 prefix-list v6in-filter permit 2002::/16
                                                            1 6to4
ipv6 prefix-list v6in-filter deny 2002::/16 le 128
                                                            ! 6to4 subnets
ipv6 prefix-list v6in-filter deny 2020:3030::/32 le 128
                                                            ! Local Prefix
ipv6 prefix-list v6in-filter deny 3ffe::/16 le 128
                                                            ! Old 6bone
ipv6 prefix-list v6in-filter permit 2000::/3 le 48
                                                            ! Global Unicast
ipv6 prefix-list v6in-filter deny ::/0 le 128
```

Receiving Prefixes

- Paying attention to prefixes received from customers, peers and transit providers assists with:
 - The integrity of the local network
 - The integrity of the Internet
- Responsibility of all ISPs to be good Internet citizens

Prefixes into iBGP

Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 - don't use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP

Router Configuration: network statement

Example:

```
interface loopback 0
  ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
  ip unnumbered loopback 0
  ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  network 215.34.10.0 mask 255.255.252.0
```

Injecting prefixes into iBGP

- Interface flap will result in prefix withdraw and reannounce
 - USE "ip route . . . permanent"
- Many ISPs redistribute static routes into BGP rather than using the network statement
 - Only do this if you understand why

Router Configuration: redistribute static

Example: ip route 215.34.10.0 255.255.252.0 Serial 5/0 router bgp 100 redistribute static route-map static-to-bgp <snip> route-map static-to-bqp permit 10 match ip address prefix-list ISP-block set origin igp <snip> ip prefix-list ISP-block permit 215.34.10.0/22 le 30

Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
 - setting communities and other attributes
 - setting origin code to IGP, etc
- Be careful with prefix-lists and route-maps
 - absence of either/both means all statically routed prefixes go into iBGP

Summary

- Best Practices Covered:
 - When to use BGP
 - When to use ISIS/OSPF
 - Aggregation
 - Receiving Prefixes
 - Prefixes into BGP

BGP Best Current Practices

ISP Training Workshops