

#### Gestión de Redes

Introducción a Netflow

011101011010110001101010001



## Agenda

#### **Netflow**

- Qué es y cómo funciona
- Aplicaciones

#### Flow-tools

- Cuestiones con la arquitectura
- Herramientas de software, etc.

#### **Laboratorio**

## Flujos de red (flows)

- Paquetes que tienen atributos comunes
- Política de creación y terminación condiciones que afectan el inicio y final de un flujo.
- Contadores paquetes, octetos, tiempo.
- Información de enrutamiento— AS, máscara de red, interfaces.

## Flujo: Definición de Cisco

## Secuencia uni-direccional de paquetes que comparten:

- 1. IP origen
- 2. IP destino
- 3. Puerto fuente UDP o TCP, ó 0 para otros protocolos
- 4. Puerto destino UDP o TCP, tipo y código ICMP, ó 0 para otros protocolos
- 5. Protocolo IP
- 6. Interfaz de Ingreso (SNMP ifIndex)
- 7. Tipo de Servicio IP

## Flujos de red

- Unidireccionales o bidireccionales.
- Los flujos bidireccionales pueden contener otra información tal como el tiempo de ida y vuelta o el comportamiento TCP
- Los flujos de aplicación van más allá de los encabezados para clasificar los paquetes por su contenido.
- Flujos agregados Flujos de flujos.

### Trabajando con Flows

- Hay que generar los flujos en el equipo (router).
- Exportar los flujos a un colector
  - Configurar la versión de NetFlow
  - Tasas de muestras
- Recopilar los flujos
  - Herramientas flow-tools, nfcap, etc
- Analizarlos
  - Muchas herramientas, o puede escribir la suya propia

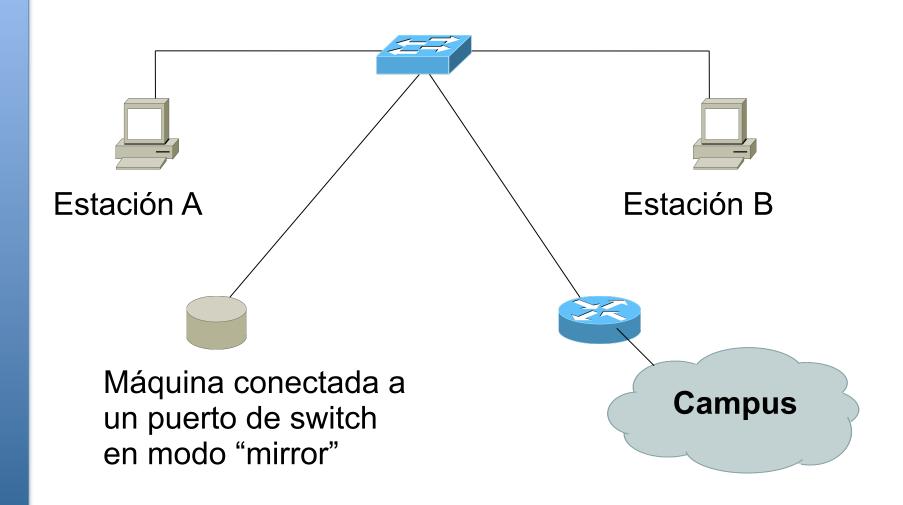
## Descriptores de flujos

- Una definición con más elementos generará más flujos.
- Mayor número de flujos implica:
  - Más tiempo para generar reportes
  - Más RAM y CPU para el dispositivo que genera los flujos
  - Más espacio de almacenamiento en la máquina que almacena/procesa los flujos
- Depende de la aplicación
  - Ingeniería de tráfico vs. detección de intrusiones

## Contabilidad de Flujos

- Se acumula información de contabilidad.
- Paquetes, octetos, tiempo de inicio, tiempo de fin, etc.
- Información de enrutamiento máscaras y números de sistema autónomo.

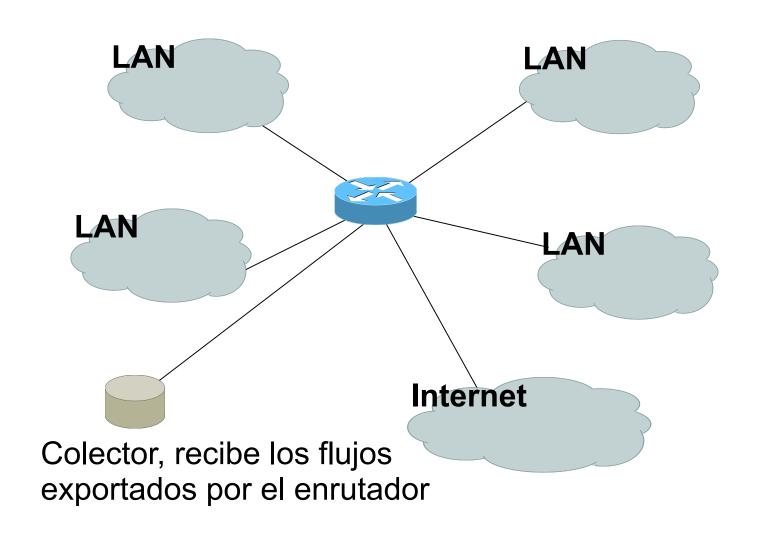
## Generación/Recopilación


#### **Monitor pasivo**

- Un monitor pasivo (servidor Unix/Linux) recibe todos los paquetes y genera los flujos.
- Uso intensivo de recursos

#### Enrutador u otro dispositivo

- Un enrutador (o switch) genera los flujos
- Es posible hacer muestreo
- No es necesario nada más


## **Colector pasivo**



### Colector pasivo

- Si se usa un colector pasivo no se verán todos los flujos de la red (a diferencia de hacerlo desde el enrutador mismo)
  - El colector sólo verá los flujos desde el punto de la red donde se encuentra
- Pero tiene la ventaja de que alivia al enrutador del trabajo de generar y exportar los flujos
- Útil en casos en los que hay un sólo punto de salida de la red, o donde sólo se requiere observar una sección del tráfico

## Recopilación desde enrutador



## Recopilación desde enrutador

- Con este método se pueden observar todos los flujos de la red
  - Pero el enrutador tiene más carga
- Una opción es seleccionar algunas interfaces en las cuales se generarán flujos, y dejar otras fuera
- Además, si hay otros enrutadores conectados a otras redes locales, puede exportarse flujos desde éstos para evitar cargar al enrutador del core.

#### **Netflow de Cisco**

- Flujos unidireccionales.
- IPv4 unicast y multicast.
- Agregados y sin agregar.
- Exportados sobre UDP.
- Soportado en las plataformas IOS y CatOS.
- El Netflow de Catalyst es una implementación distinta.

#### Versiones de Netflow de Cisco

- 4 tipos sin agregación (1,5,6,7).
- 14 tipos con agregación (8.x, 9).
- Cada versión tiene su formato de paquete distinto.
- La Versión 1 no tiene números de secuencia.
- La "version" define que tipo de datos hay en el flujo
- Algunas versiones son específicas para la plataforma Catalyst

#### **NetFlow Version 1**

- Campos clave: IP destino/fuente,
   Puerto destino/fuente, Protocolo IP,
   ToS, Interfaz de entrada.
- Contabilidad: Paquetes, Octetos, tiempo de inicio/fin, paquete de salida
- Otros: OR lógico de las banderas TCP.
- Obsoleto

#### **NetFlow Versiones 2-4**

- Internas de Cisco
- Nunca se publicaron

#### **NetFlow v5**

- Campos clave: IP destino/fuente, Puerto destino/fuente, Protocolo IP, ToS, Interfaz de entrada.
- Contabilidad: Paquetes, Octetos, tiempo de inicio/fin, paquete de salida.
- Otros: OR lógico de banderas TCP, AS destino/origen, máscara de red.
- El formato de paquete añade un número de secuencia para detectar flujos perdidos.
- IPv4 solamente

#### NetFlow v8

- Flujos v5 agregados
- No están disponibles en todos los equipos
- Muchos menos datos que procesar, pero pierde la granularidad de v5
  - No hay directiones IP

#### NetFlow v9

- IPv6
- Campos adicionales como etiquetas MPLS
- Construido sobre las versiones anteriores

## Configuración de IOS

- Se configura en cada interfaz de entrada
- Definir la versión.
- Definir la dirección IP del colector
- Agregar tablas de agregación (opcional)
- Configurar los tiempos de caducidad y el tamaño de tabla (v5) principal (opcional)
- Configurar el período de muestreo (opcional).

## Configuración de IOS

```
ip flow-top-talkers
top 10
sort-by bytes
```

gw-169-223-2-0#sh ip flow top-talkers

| SrcIf    | SrcIPaddress         | DstIf         | DstIPaddress  | $\mathtt{Pr}$ | ${\tt SrcP}$ | DstP | Bytes |
|----------|----------------------|---------------|---------------|---------------|--------------|------|-------|
| Fa0/1    | 169.223.2.2          | Fa0/0         | 169.223.11.33 | 06            | 0050         | 0B64 | 3444K |
| Fa0/1    | 169.223.2.2          | <b>Fa</b> 0/0 | 169.223.11.33 | 06            | 0050         | 0B12 | 3181K |
| Fa0/0    | 169.223.11.33        | Fa0/1         | 169.223.2.2   | 06            | 0B12         | 0050 | 56K   |
| Fa0/0    | 169.223.11.33        | Fa0/1         | 169.223.2.2   | 06            | 0B64         | 0050 | 55K   |
| Fa0/1    | 169.223.2.2          | Local         | 169.223.2.1   | 01            | 0000         | 0303 | 18K   |
| Fa0/1    | 169.223.2.130        | <b>Fa</b> 0/0 | 64.18.197.134 | 06            | 9C45         | 0050 | 15K   |
| Fa0/1    | 169.223.2.130        | <b>Fa</b> 0/0 | 64.18.197.134 | 06            | 9C44         | 0050 | 12K   |
| Fa0/0    | 213.144.138.195      | Fa0/1         | 169.223.2.130 | 06            | 01BB         | DC31 | 7167  |
| Fa0/0    | 169.223.15.102       | Fa0/1         | 169.223.2.2   | 06            | C917         | 0016 | 2736  |
| Fa0/1    | 169.223.2.2          | Local         | 169.223.2.1   | 06            | DB27         | 0016 | 2304  |
| 10 of 10 | ton talkons shown 10 | flore         | processed     |               |              |      |       |

10 of 10 top talkers shown. 49 flows processed.

#### Resumen de comandos

Activar CEF (por defecto)

```
-ip cef
```

Activar flujos en cada interfaz

```
ip route cache flow
OR
ip flow ingress
ip flow egress
```

Ver los flujos

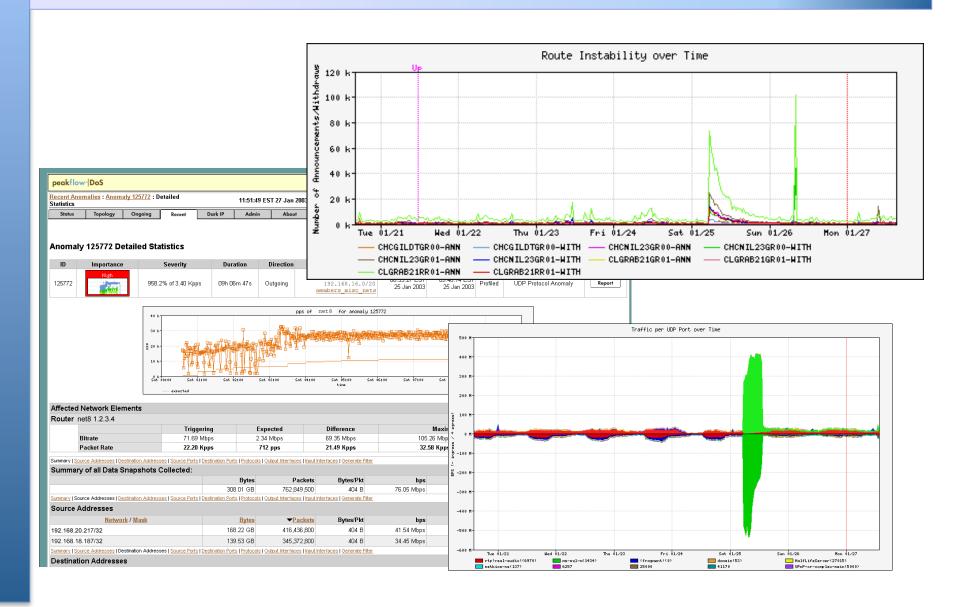
```
show ip cache flowshow ip flow top-talkers
```

#### Resumen de comandos

Exportar los flujos al colector

```
ip flow-export version 5 [origin-as|peer-as]
ip flow-export destination x.x.x.x <udp-port>
```

- origin-as incluirá el número de AS original en el flujo mientras que peer-as sólo incluirá el número de AS del vecino con el que se hace peering
- Exportación de flujos agregados

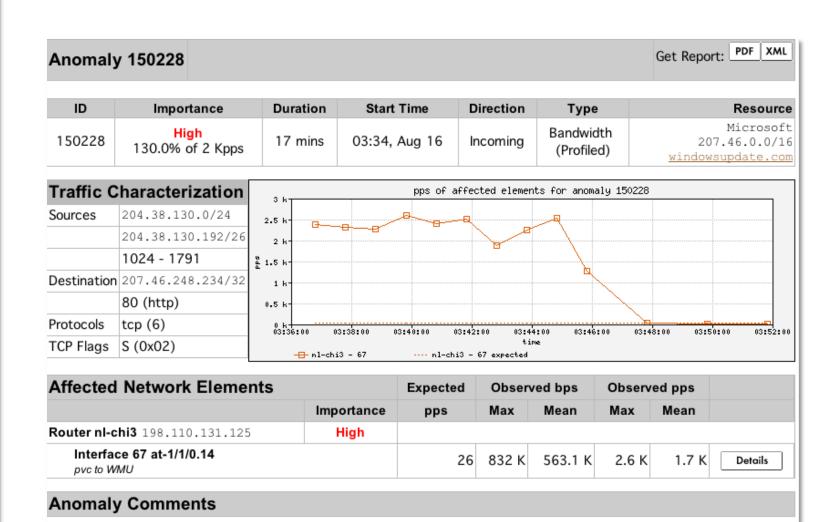

```
ip flow-aggregation cache as|prefix|dest|source|proto
  enabled
  export destination x.x.x.x <udp-port>
```

## Netflow y Aplicaciones

## **Usos para NetFlow**

- Identificación y resolución de problemas
  - Clasificación del tráfico
  - Análisis de DoS (ver presentación de Danny McPherson)
- Análisis e ingeniería de tráfico
  - Análisis de tráfico entre sistemas autónomos
  - Reportes en proxies de aplicación
- Contabilidad (facturación)
  - Comprobación cruzada con otras fuentes
    - (SNMP)

## Detección de anomalías: El worm SQL "Slammer"

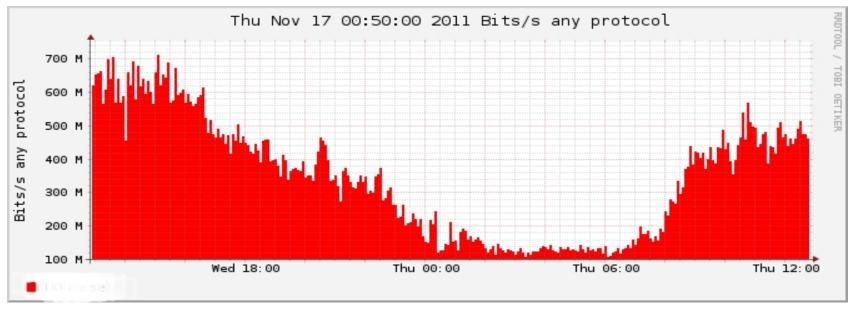


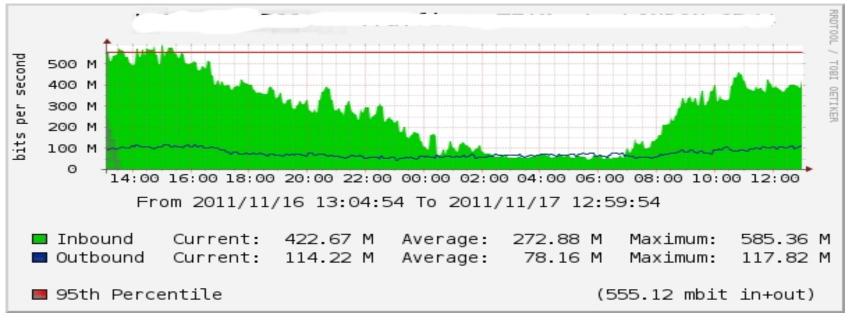

#### Detección de anomalías


Una vez se hayan establecido puntos de referencia, se pueden detectar anomalías

- Basándose puramente en las tasas (pps o bps), puede haber falsas alarmas
- Algunas anomalías pueden detectarse enseguida, incluso sin un punto de referencia (Ej., TCP SYN o RST floods)
- Se pueden definir "firmas" o "huellas" para detectar tráfico de transacciones "interesantes" (Ej., proto udp y puerto 1434 y 404 octetos (376 payload) == slammer!)
- Se pude mejorar la precisión de la detección añadiendo la dimensión temporal a las firmas

## Herramientas comerciales para Flujos





# Detección comercial: Un ataque DoS de mayor escala



#### Contabilidad

Puede suplementarse la contabilidad basada en SNMP con la basada en flujos (ver siguiente gráfico).





#### Referencias

- flow-tools:
   http://www.splintered.net/sw/flow-tools
- WikiPedia: http://en.wikipedia.org/wiki/Netflow
- Aplicaciones NetFlow
   http://www.inmon.com/technology/netflowapps.php
- Netflow HOW-TO
   http://www.linuxgeek.org/netflow-howto.php
- IETF: http://www.ietf.org/html.charters/ipfix-charter.html

#### Referencias

- Internet2 NetFlow http://abilene-netflow.itec.oar.net/
- Flow-tools: flow-tools@splintered.net
- Cisco Centric Open Source Community http://cosi-nms.sourceforge.net/related.html
- Cisco NetFlow Collector User Guide
   http://www.cisco.com/en/US/docs/net\_mgmt/netflow\_collection\_engine/6.0/tier\_one/user/quide/user.html