Contents

1 Introduction 2

2 Logistics 2

3 Address Space Allocation 4
 3.1 End networks (universities, etc) 4
 3.2 Commercial Internet Service Providers (ISPs) 5
 3.3 Internet Exchange Points (IXPs) 5

4 Basic Router Configuration 5
1 Introduction

The purpose of this exercise is to:

- Configure the basics of a Cisco router
- Enable OSPF to exchange internal routing information
- Configure static routing towards a service provider

The network configuration is designed to be modular to allow the lab to grow as needed depending on the number of participants. Each module will contain 1 ISP and 3 customer networks (universities, etc.). Modules will be interconnected (see Fig. 3)

2 Logistics

Each participant will be assigned to a network. Depending on the number of participants, either a single person or a group will be responsible for the configuration of a router. You may be asked to rotate and work on a different router so that you have the opportunity to understand the network from another point of view.

As you go through the exercises, you will see examples of configurations for one or more routers. Make sure to take those examples and adapt them to
Figure 2: Physical Topology - Module 2

Figure 3: Topology with 2 modules
your own router, network topology and addressing scheme. Use the diagrams to guide you.

Refer to the Lab Access Instructions document for information about logging into the routers that have been assigned to you.

3 Address Space Allocation

3.1 End networks (universities, etc)

<table>
<thead>
<tr>
<th>Group</th>
<th>IPv4</th>
<th>IPv6</th>
<th>ASN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.10.0.0/16</td>
<td>fd00:10::/32</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10.20.0.0/16</td>
<td>fd00:20::/32</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>10.30.0.0/16</td>
<td>fd00:30::/32</td>
<td>30</td>
</tr>
</tbody>
</table>

The list will continue in the same pattern if there are more groups.

Each group will then further partition their space as follows:

<table>
<thead>
<tr>
<th>IPv4</th>
<th>IPv6</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.X0.0.0/17</td>
<td>fd00:X0::/40</td>
<td>End user space</td>
</tr>
<tr>
<td>10.X0.254.0/24</td>
<td>fd00:X0:fe::/64</td>
<td>Point-to-point links</td>
</tr>
<tr>
<td>10.X0.255.0/24</td>
<td>fd00:X0:ff::/64</td>
<td>Router loopbacks</td>
</tr>
</tbody>
</table>

Where X is your group number (1,2,3...)
Prefixes for point to point links will be of length /30 for IPv4 and /127 for IPv6 (we will adopt the recommendations of RFC6164 for IPv6 inter-router links):

<table>
<thead>
<tr>
<th>IPv4</th>
<th>IPv6</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.X0.254.0/30</td>
<td>fd00:X0:fe::/127</td>
<td>P2P #1</td>
</tr>
<tr>
<td>10.X0.254.4/30</td>
<td>fd00:X0:fe::2/127</td>
<td>P2P #2</td>
</tr>
<tr>
<td>10.X0.254.8/30</td>
<td>fd00:X0:fe::4/127</td>
<td>P2P #3</td>
</tr>
</tbody>
</table>
... and so on.
Router loopback addresses will be of size /32 for IPv4 and /128 for IPv6:

<table>
<thead>
<tr>
<th>IPv4</th>
<th>IPv6</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.X0.255.1/32</td>
<td>fd00:X0:ff::1/128</td>
<td>RX1 Loopback</td>
</tr>
<tr>
<td>10.X0.255.2/32</td>
<td>fd00:X0:ff::2/128</td>
<td>RX2 Loopback</td>
</tr>
</tbody>
</table>

3.2 Commercial Internet Service Providers (ISPs)

<table>
<thead>
<tr>
<th>ISP</th>
<th>IPv4</th>
<th>IPv6</th>
<th>ASN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.201.0.0/16</td>
<td>fd00:201::/32</td>
<td>201</td>
</tr>
<tr>
<td>2</td>
<td>10.202.0.0/16</td>
<td>fd00:202::/32</td>
<td>202</td>
</tr>
</tbody>
</table>

... and so on.

3.3 Internet Exchange Points (IXPs)

<table>
<thead>
<tr>
<th>IXP</th>
<th>IPv4</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.251.1.0/24</td>
<td>fd00:251:1::/64</td>
</tr>
</tbody>
</table>

4 Basic Router Configuration

1. Name the router

```
enable
cfg term
hostname R11
```

2. Configure Authentication

```
aaa new-model
aaa authentication login default local
aaa authentication enable default enable
```
username nsrnc secret nsrnc
enable secret nsrnc
service password-encryption
line vty 0 4
 transport preferred none
line console 0
 transport preferred none

3. Configure logging

no logging console
logging buffered 8192 debugging

4. Disable DNS resolution

no ip domain-lookup

5. Make sure the router understands CIDR. This is the default setting in recent IOS versions, but just in case.

ip subnet-zero
ip classless

6. Disable source routing

no ip source-route

7. Activate IPv6 routing

ipv6 unicast-routing

8. Exit configuration mode and save

end
write memory

9. Configure your interfaces according to the diagram

Notice that for the links to the ISP we will use the ISP’s addresses, while for internal links we use internal addresses.

On R11:
interface GigabitEthernet2/0
description P2P Link to R12
ip address 10.10.254.1 255.255.255.252
no ip directed-broadcast
no ip redirects
no ip proxy-arp
ipv6 address fd00:10:fe::/127
ipv6 nd ra suppress
no shutdown
!

On R12:

interface GigabitEthernet1/0
description P2P Link to ISP1
ip address 10.201.254.2 255.255.255.252
no ip directed-broadcast
no ip redirects
no ip proxy-arp
ipv6 address fd00:201:fe::1/127
ipv6 nd ra suppress
no shutdown
!
interface GigabitEthernet2/0
description P2P Link to R11
ip address 10.10.254.2 255.255.255.252
no ip directed-broadcast
no ip redirects
no ip proxy-arp
ipv6 address fd00:10:fe::1/127
ipv6 nd ra suppress
no shutdown

Explanations for some of the above commands:

no ip directed-broadcast

An IP directed broadcast is an IP packet whose destination address is a valid broadcast address for some IP subnet, but which originates from a node that is not itself part of that destination subnet.

Because directed broadcasts, and particularly Internet Control Message Protocol (ICMP) directed broadcasts, have been abused by malicious persons, we recommend disabling the ip directed-broadcast command on any interface where directed broadcasts are not needed (probably all).

no ip proxy-arp
Proxy ARP is the technique in which one host, usually a router, answers ARP requests intended for another machine. By “faking” its identity, the router accepts responsibility for routing packets to the “real” destination. Proxy ARP can help machines on a subnet reach remote subnets without the need to configure routing or a default gateway.

Disadvantages of proxy arp:

- It increases the impact of ARP spoofing, in which a machine claims to be another in order to intercept packets.
- It hides network misconfigurations in hosts
- Hosts will have larger ARP tables

no ip redirects

ICMP redirects can be sent to a host when the router knows that another router in the same subnet has a better path to a destination. If a hacker installs a router in the network that causes the legitimate router to learn these illegitimate paths, the hacker’s router will end up diverting legitimate traffic thanks to ICMP redirects. Thus, we recommend that you disable this feature in all your interfaces.

ipv6 nd ra suppress

IPv6 router advertisements are sent periodically by routers to inform hosts that the router is present, and to allow hosts to autoconfigure themselves using stateless autoconfiguration mechanisms. This is not necessary on point-to-point interfaces.

10. Do some PING tests

R12# ping 10.10.254.1 <- R11
R12# ping fd00:10:fe::0 <- R11
R12# ping 10.201.254.1 <- ISP1
R12# ping fd00:201:fe::0 <- ISP1

and then verify the output of the following commands:

- show arp : Show ARP cache
- show interface <int> : Show interface state and config
- show ip interface : Show interface IP state and config
- show ipv6 neighbors : Show IPv6 neighbors
- show ipv6 interface <int> : Show interface state and config
- show cdp neighbors : Show neighbors seen via CDP