E-Mail ## SMTP and Postfix 1110101101011000110101000111010011 SMTP Email ## Scope - How Email Appears to Work - How Email Really Works - Mail User Agent (MUA) - Message Format - Mail Delivery Agent (MDA)/ Mail Transfer Agent (MTA) - Firewalls, Spam and Virus Filters # **How Email Appears To Work** # **How Email Really Works** # Mail User Agent (MUA) - Application the originating sender uses to compose and read email - Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom, - Thunderbird, Pegasus, Express, Netscape, Outlook, ... - You can have multiple MUAs on one system end user choice # **Message Format** #### Envelope Routing information for the "postman" #### Message Header - Sender - Recipients (simple, lists, copies, blind copies) - Other fields of control (date, subject) #### Message Body - Free text - Structured document (i.e.: MIME) # **Message Format** From: Philip Hazel <ph10@cus.cam.ac.uk> To: Julius Caesar <julius@ancient-rome.net> Cc: Mark Anthony < Mark A@cleo.co.uk > Subject: How Internet mail works Julius, I'm going to be running a course on ... - Format was originally defined by RFC 822 in 1982 - Now superseded by RFC 2822 - Message consists of - Header lines - A blank line - Body lines # **Message Format** Embedded MUA uses interprocess call to send to MTA Freestanding MUA uses SMTP to send mail Headers added by the MUA before sending From: Philip Hazel <ph10@cus.cam.ac.uk> To: Julius Caesar <julius@ancient-rome.net> cc: Mark Anthony < Mark A@cleo.co.uk > Cubicate Have Internat mail works Date: Fri, 10 May 2002 11:29:24 +0100 (BST) Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@taurus.cus.cam.ac.uk> MIME-Version: 1.0 Content-Type: TEXT/PLAIN; charset=US-ASCII Julius. I'm going to be running a course on ... # Mail Delivery Agent (MDA) / Mail Transfer Agent (MTA) - MDA/MTA accepts the email, then routes it to local mailboxes or forwards it if it isn't locally addressed - An email can encounter a network cloud within a large company or ISP, or the largest network cloud in existence: the Internet. # Mail Delivery Agent (MDA) / Mail Transfer Agent (MTA) Headers added by MTAs ``` Received: from taurus.cus.cam.ac.uk ([192.168.34.54] ident=exim) by mauve.csi.cam.ac.uk with esmtp (Exim 4.00) id 101qxX-00011X-00; Fri, 10 May 2002 11:50:39 +0100 Received: from ph10 (helo=localhost) by taurus.cus.cam.ac.uk with local-smtp (Exim 4.10) id 101qin-0005PB-00; Fri, 10 May 2002 11:50:25 +0100 ``` From: Philip Hazel <ph10@cus.cam.ac.uk> To: Julius Caesar <julius@ancient-rome.net> cc: Mark Anthony <MarkA@cleo.co.uk> # Message in transit - A message is transmitted with an envelope: MAIL FROM:<ph10@cus.cam.ac.uk> RCPT TO:<julius@ancient-rome.net> - The envelope is separate from the RFC 2822 message - Envelope (RFC 2821) fields need not be the same as the header (RFC 2822) fields - MTAs are (mainly) concerned with envelopes Just like the Post Office... - Error ("bounce") messages have null senders MAIL FROM:<> # **An SMTP Session Example** ``` 220 server.bluepipe.net ESMTP Postfix HELO macbook.catpipe.net 250 server.bluepipe.net MAIL From: <regnauld@x0.dk> 250 2.1.0 Ok RCPT To: <regnauld@nsrc.org> 250 2.1.5 Ok DATA 354 End data with <CR><LF>.<CR><LF> Subject: hello 250 2.0.0 Ok: queued as 41A8B4F5C94 QUIT 221 2.0.0 Bye ``` ## **SMTP: response codes** - 1xx:positive preliminary answer (action to be continued in subsequent command) - 2xx:positive response indicating that processing has been carried out as requested - 3xx:positive partial response: the client must give more data for processing to continue - 4xx:negative answer, processing is refused, but the command can be tried again later - 5xx:negative answer, processing cannot be carried out #### **ESMTP** ``` 220 server.bluepipe.net ESMTP Postfix EHLO macbook.catpipe.net 250-server.bluepipe.net 250-PIPELINING 250-SIZE 104857600 250-VRFY 250-ETRN 250-ENHANCEDSTATUSCODES 250-8BITMIME 250-DSN 250-BINARYMIME 250 CHUNKING ``` MAIL From: <regnauld@x0.dk> - Defined in RFC 1651 and following - Adds new functionality - Transport of 8bit MIME messages - Maximum message size limit - Function limitation (EXPN, VRFY, ...) - Other extensions (pipelining, private extensions) - The welcome message for ESMTP is EHLO (instead of HELO). In case of a negative answer, the client must revert to the old protocol. . . . ## **Network Cloud** - large company network or ISP, or the largest network cloud in existence: the Internet. - may encompass a multitude of mail servers, DNS servers, routers, lions, tigers, bears (wolves!) and other devices and services - devices may be protected by firewalls, spam filters and malware detection software that may bounce or even delete an email ## **Email Queue** - •The email enters an email queue with other outgoing email messages . - •If there is a high volume of mail in the queue—either because there are many messages or the messages are unusually large, or both — - •the message will be delayed in the queue until the MTA processes the messages ahead of it. - •Transient failures will cause mail to stay in the queue until they are fixed for a configurable period of time: - •Permanent failures will cause the MTA to create a bounce message (from mailer-daemon) that gets sent to the original sender specified in the envelope UNLESS the sender field there is empty (<>) image from http://computer.howstuffworks.com/e-mail-messaging/email3.htm ## MTA to MTA Transfer - Email clears the queue, enters the Internet network cloud, where it is routed along a host-to-host chain of servers - The sending MTA handles all aspects of mail delivery until the message has been either accepted or rejected by the receiving MTA - Each MTA needs to "stop and ask directions" from the DNS in order to identify the next MTA in the delivery chain - Exact route depends partly on server availability and mostly on which MTA can be found to accept email for the domain specified in the address - **ABUSE**: Some spammers specify any part of the path, deliberately routing their message through a series of relay servers in an attempt to obscure the true origin of the message. ## DNS resolution and transfer process - To find the recipient's IP address and mailbox, the MTA must drill down through the DNS system, which consists of a set of servers distributed across the Internet beginning with the root nameservers - root servers refer requests for a given domain to the root nameservers that handle requests for that tld - MTA can bypass this step because it has already knows which domain nameservers handle requests for these .tlds e.g. telecom.ma - asks the appropriate DNS server which Mail Exchange (MX) servers have knowledge of the subdomain or local host in the email address - DNS server responds with an MX record: a prioritized list of MX servers for this domain - To the DNS server, the server that accepts messages is an MX server. When is transferring messages, it is called an MTA. - MTA contacts the MX servers on the MX record in order of priority until it finds the designated host for that address domain - sending MTA asks if the host accepts messages for the recipient's username at that domain (i.e., username@domain.tld) and transfers the message ## Firewalls, spam, and virus filters - An email encountering a firewall may be tested by spam and virus filters before it is allowed to pass inside the firewall - filters test to see if the message qualifies as spam or malware - If the message contains malware, the file is usually quarantined and the sender is notified - If the message is identified as spam, it will probably be deleted without notifying the sender. # **Delivery** - If the message makes it past the filters: - The MTA calls a local MDA to deliver the mail to the correct mailbox, where it will sit until it is retrieved by the recipient's MUA ## Bibliography: RFCs - RFC 2821, 2822, - RFC 1122, 1123: prerequisites for machines connected to the Internet - RFC 1651: extensions to the SMTP protocol - RFC 1653: SIZE extension - RFC 1830: transporting large messages containing binaries - MIME RFCs... Postfix MTA Email # **Short History** - Originally developed in the late 90s at IBM by Wietse Venema, author of security software (SATAN, TCPwrappers, ...), as "IBM Secure Mailer" - Place under an Open Source license, and renamed "Postfix" - Intended as a replacement for then insecure mail systems, such as Sendmail # Design goals - Safety - Robustness - Performance - Modularity - Compatibility # Safety - Postfix makes it very hard to lose mails many checks to ensure that mail has been written to disk or delivered - Back off mechanisms in case of repeated failure # Security - Collection of daemons working together - Doesn't use environment for communication - Very paranoid about input checking, all allocation is dynamic (avoiding buffer overflows) - chroot support out of the box for almost all processes & daemons - No data is ever exchanged directly between processes – all is done via IPC, and files on disk - Conservative resource usage ### Performance - Designed to be fast from the ground up - Also behaves well with neighbors, doesn't flood them with mail, and instead uses a throughput adaptation - Will not block delivery for a message if one recipient domain fails ## Modular - One program, one function - All programs controlled from "master.cf" - Many small programs working together, with limited privileges - Compatible with Sendmail's /etc/aliases and .forward conventions ### **Features** - Virtual domains domains and users are completely independent of system (UNIX) users - Aliases sendmail compatible - Rewriting senders, recipients, globally - RBL support (Realtime Blackhole Lists) support - Content filtering using pipes, SMTP or milter - Support for arbitrary mail manipulation with policy services (custom programs talking to postfix) #### **Features** - Restriction classes - Conditional filtering - Sender or recipient address verification (test email addresses before accepting mail from them) - TLS support ## Core concept: maps - In postfix, everything is looked up in a map (table) - Maps can be in many formats or use many data sources: - hash/btree - regexp/PCRE - CIDR - NIS - LDAP, *SQL (user defined queries) ## Architecture # Basic Postfix configuration ## Two primary configuration files - •main.cf - Main configuration file where all the subsystems are configured (smtp, smtpd, cleanup, routing, ...) - master.cf - File controlling how the "master" process of postfix will launch all the necessary postfix daemons to perform mail routing, on-demand # Other configuration files - Reside in "maps" mentioned earlier - Tables containing values and conditions, referred to from main.cf, controlling all aspects such as: - Virtual and local domains - Routing rules - Access control - Rewriting - ... # Configuration: postconf command - postconf used to view and edit configuration parameters - For changing the configuration, it is usually done vi editing "main.cf" directly #### Some basic main.cf ``` # what domains do I accept mail for (user@...) mydestination = $myhostname, localhost, \ hervey.ws.nsrc.org # who do I send mail as ? myorigin = $mydomain # what clients do I consider local (and trust them) mynetworks = 127.0.0.0/8 192.168.1.0/24 # Send all outgoing mail to this server relayhost = mail.example.com # Aliases alias maps = hash:/etc/aliases ``` ## Some basic main.cf (cont'd) • in the file /etc/aliases: root: sysadm phil: regnauld@nsrc.org #### Virtual domains - Allows having multiple mail domains on one machine - They can be completely different than your own hostname/domainname - Example: - in main.cf: ``` virtual maps = $cf/virtual-domains ``` in virtual-domains file: ``` superdomain.com VIRTUAL phil@superdomain.com phil@nsrc.org, pr@eu.org @superdmain.com sysadm@localhost ``` ## Controlling postfix - postfix start start the postfix system - postfix stop stop the postfix system - postfix check verify the configuration - newaliases rebuild the local aliases - mailq show the mails in the queue currently being processed ## Bibliography: References #### Links - http://www.postfix.org/ - http://www.ijs.si/software/amavisd/ #### Books: - "Postfix", Richard Blum, ed. Sams (1st ed. May 15, 2001), 624 p., ISBN: 0672321149 - "The book of Postfix", Ralf Hildebrandt, Patrick Koetter ed. No Starch Press (October 2003), 328 p., ISBN: 1593270011 Configuration and Basic Setup: (specific to our installation environment) ## **POSTFIX** ### installing - It is already installed, otherwise you'd have to do: - # apt-get install postfix - In our case we need to do: - # dpkg-reconfigure -phigh postfix # Type of Mail configuration #### **FQDN** ### myhostname - our virtual hosting solution will create a hostname of gold.ws.nsrc.org. we need to change this as well as set the 'destinations' this host accepts mail for. - Edit /etc/postfix/main.cf and set: ``` myhostname = pc31.ws.nsrc.org mydestination = localhost, $myhostname \ hervey.ws.nsrc.org ``` Restart postfix: ``` # service postfix restart ``` #### Install a basic MUA ``` # apt-get install alpine ``` \$ alpine (command keys in alpine are case insensitive). Press 'e' to exit the counter then follow the menu 'i' to go to the inbox, etc. Try sending an email to sysadm@pcX.ws.nsrc.org as well as any other domain that should be working in class. Since we did not delegate from nsrc.org mail to yahoo.com may bounce but should work to a gmail.com address. Returning mail won't find its way here. Extras email #### Bits and pieces we can't cover - Adding SSL to SMTP as well as SMTP AUTH - POP3 - IMAP - Webmail - SSL to POP3 and IMAP - Configuration of other MUAs