
These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license
(http://creativecommons.org/licenses/by-nc/3.0/)

Security with SSH

Topics

•  Where to get SSH (Secure SHell)
•  How to enable and configure SSH
•  Where to get SSH clients for Windows
•  Authentication of the server to the client

 (host keys)
•  Issues to do with changing of the host key
•  Password authentication of the client to the

 server
•  Cryptographic authentication of the client to

 the server (rsa/dsa keys)
•  hostkey exchange, scp, and sftp labs

Main Security Concerns

SSH applies directly to dealing with these two
areas of security:

•  Confidentiality
•  Keeping our data safe from prying eyes

•  Authentication and Authorization
•  Is this person who they claim to be?

Where to Get the SSH server

First see if SSH is installed on your system and
what version. Easiest way is:

$ ssh -V

If you want or need an updated version of
OpenSSH (current version is 5.9) you can
simply type:
$ apt-get update
$ apt-get install openssh-server

We recommend using OpenSSH for Ubuntu.
Default version installed in FreeBSD 12.04
LTS is OpenSSH Portable version 5.9p1

Enable and Configure OpenSSH

On our machines this is already done, but if you just
installed it you may want to see how it’s configured.

Take a look at /etc/ssh/ssh_config and /etc/sshd_config.
In sshd_config you might be interested in:

PermitRootLogin yes/no (you generally want “no”)

We'll be allowing root login, but only with keys in our

exercises.

There are many options in ssh_config and sshd_config.

You should read through these files to verify they meet
your expecations.

Where to Get SSH Clients for Windows

There are several free, shareware, and commercial ssh clients for
Windows. See http://www.openssh.org/windows.html for a list.

A few that support protocol version 2 include:

•  Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty/
•  Kirby from

http://www.downloadbestsoft.net/programs/kitty_portable.exe
•  OpenSSH for Windows (using Cygwin):

http://www.cygwin.com/ http://sshwindows.sourceforge.net/
•  Secure Shell from ssh.com (free for personal use):

http://www.ssh.com/products/ssh/download.cfm
•  And WRQ at http://www.wrq.com/products/reflection/ssh/ is a

nice product if you are willing to pay.

SSH Connection Methods

Several things can happen when using SSH
to connect from your machine (client) to
another machine (server):

•  Server's public host key is passed back to
the client and verified against known_hosts

•  Password prompt is used if public key is
accepted, or already on client, or

•  RSA/DSA key exchange takes place and
you must enter in your private key
passphrase to authenticate (assuming you
have one).

SSH Quick Tips

•  You have a choice of authentication keys - RSA is
the default (dsa is fine as well).

•  The files you care about are:
/etc/ssh/ssh_config
/etc/ssh/sshd_config
~/.ssh/id_dsa and id_dsa.pub
~/.ssh/id_rsa and id_rsa.pub
~/.ssh/known_hosts
~/.ssh/authorized_keys

•  And, note the rsa/dsa host-wide key files in /etc/ssh
•  Be sure that you do “man ssh” and “man sshd”

and read the entire descriptions for both the ssh
client and ssh server (sshd).

SSH Authentication

Private key can be protected by a passphrase
So you have to give it each time you log in or

use "ssh-agent" which holds a copy of your
passphrase in RAM

No need to change passwords across dozens
of machines

Disable passwords entirely!
vi /etc/ssh/ssh_config

PasswordAuthentication yes

Man in the Middle Attacks

The first time you connect to a remote host,
remember its public key

Stored in ~/.ssh/known_hosts
The next time you connect, if the remote key

is different, then maybe an attacker is
intercepting the connection!

Or maybe the remote host has just got a new
key, e.g. after a reinstall. But it's up to you
to resolve the problem

You will be warned if the key changes.

Exchanging Host Keys

•  First time connecting with ssh:
ssh username@pc1.cctld.pacnog2.dnsdojo.net

The authenticity of host 'pc1.cctld.pacnog2.dnsdojo.net (202.4.34.65)' can't
be established.

DSA key fingerprint is 91:ba:bf:e4:36:cd:e3:9e:8e:92:26:e4:57:c4:cb:da.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'pc1.cctld.pacnog2.dnsdojo.net, 202.4.34.1' (DSA)
to the list of known hosts.

username@pc1.cctld.pacnog2.dnsdojo.net's password:

•  At this point the client has in the file ~/.ssh/known_hosts the contents

of pc1.cctld.pacnog2.dnsdojo.net's /etc/ssh/ssh_host_dsa_key.pub.
•  Next connection:
[hallen@hallen-lt .ssh]$ ssh usrname@pc1.cctld.pacnog2.dnsdojo.net

username@pc1.cctld.pacnog2.dnsdojo.net's password:

•  Now trusted - Not necessarily a good thing...

More SSH References

For a comparison of SSH
Version 1 and 2 see:
http://www.snailbook.com/
faq/ssh-1-vs-2.auto.html

An excellent book on SSH is:

SSH, The Secure Shell

The Definitive Guide,
Second Edition.

By
Daniel J. Barrett,
Richard Silverman, &
Robert G. Byrnes

May 2005
ISBN: 0-596-00895-3

Exchanging Host Keys Cont.

Command Key Type Generated Public File
ssh-keygen -t rsa RSA (SSH protocol 2) id_rsa.pub

ssh-keygen -t dsa DSA (SSH protocol 2) id_dsa.pub

•  Default key size is 1024 bits
•  Public files are ordinary text files
•  Private files are encrypted if you use a

passphrase (still text)

Corresponding file on the host for host key
exchange is “known_hosts”.

Exchanging Host Keys Cont.

How does SSH decide what files to compare?

Look in /etc/ssh/sshd_config. For OpenSSH version 3 the

server defaults to protocol 2 .

By default OpenSSH version 2 client connects in this

order:
•  RSA version 2 key
•  DSA version 2 key
•  Password based authentication (even if RSA version 1

key is present)
Pay attention to the “HostKeyAlgorithms” setting in /etc

ssh/ssh_config to help determine this order - or use ssh
command line switches to override these settings.

SSH - “Magic Phrase”
Basic concept to understand how an SSH connection is

made using RSA/DSA key combination:
•  Client X contacts server Y via port 22.
•  Y generates a random number and encrypts this using

X's public key. X's public key must reside on Y. You
can use scp to copy this over.

•  Encrypted random number is sent back to X.
•  X decrypts the random number using it's private key

and sends it back to Y.
•  If the decrypted number matches the original encrypted

number, then a connection is made.
•  The originally encrypted random number sent from Y to

X is the “Magic Phrase”

Tunneling with SSH

We'll do this if there's time and interest...
:-)

==>

Exercises

Now I'll ask you to do the following
•  Ensure you all have SSH client software

installed on your machines.
•  Ensure you all have VNC clients installed

too on your machines
•  Try reaching the DMZ machine in your

group using SSH

Tunneling with SSH

You can use SSH to tunnel insecure services
in a secure manner.

•  SSH tunneling services includes
authentication between known_hosts,
password challenge, and public/private key
exchanges.

•  You can even indirectly tunnel via an
intermediary machine.

Tunneling with SSH Cont.

The basic concept looks like this:
•  Connect from one machine to another as

username.
•  Use ssh options to specify the port number

on the remote machine that you wish to
forward to the port on your local machine.

•  Your ssh connection will “tunnel” data
securely across ssh from the remote
machine to your local machine.

There are several options to be aware of.

Tunneling with SSH Cont.

Tunneling by Example
Here is a sample tunnel command using SSH under

FreeBSD:
ssh -C -f username@host.domain -L 1100:localhost:110 sleep 10000

What is happening here?
•  The '-C' option specifies compress the data. Good

if it works.
•  '-f' means ssh goes to the background just before

executing the specified command listed (in this
case, “sleep 10000”).

•  '-L' forwards the port on the left, or client (1100) to
the one on the right (110) or remote side.

Tunneling with SSH Cont.

Tunneling by Example Cont.
So, what does this command do?
ssh -C -f username@host.domain -L 1100:localhost:110 sleep 10000

This “tunnels” your POP email from port 110 on the
remote side through port 1100 on your local side.

The process backgrounds for 10000 second
(detaches and runs).

This is done under the authority between yourself
(client) and user@host.domain.

Diagram* of Tunneling both smtp and POP Services

Tunneling with SSH Cont.
Tunneling by Example Cont.
Why use something like ports “1100” and “2500”?
•  Ports up to 1024 can only be bound to by the admin user.
•  If you are admin you can forward 110 to 110, 25 to 25, and so

on.
•  Other popular tunneling tricks include tunnels for XWindows,

IMAP, etc.
•  On the client side you must set programs to use “localhost” –

For example, for POP and smtp, your mail client must use
“localhost” instead of host.domain (i.e. no more
“mail.host.com”).

•  If you are not admin, and your ports are changed, then your
mail client must be able to set the smtp and POP ports as well.

•  We may show or discuss this using a local email client now.

Tunneling with SSH Cont.

One More Tunneling Example
•  You can use SSH to do “Indirect Port

Forwarding”
•  What to do if your organization's email sits

behind a firewall?
•  Connect via an intermediary box

(gateway).
Here's a real world example:

ssh -C -f hallen@gateway.turbolinux.com -L
2500:mail.us.tlan:25 -L 1100:mail.us.tlan:110 /bin/sleep
10000

Tunneling with SSH Conclusion

•  Tunneling lets you securely access basic
services such as POP and IMAP.

•  You can securely tunnel ports using SSH.
•  You can use /etc/services to verify you are

not using a port that is already defined.
•  Only admin can redfine ports below 1024.
•  You can tunnel ports directly between two

machines, and indirectly with a machine in
the middle.

