Intrusion Detection

version: 2.0

Fakrul (pappu) Alam fakrul@bdhub.com

Acknowledgement

Original slides prepared by Steven M. Bellovin

Sometimes, Defenses Fail

- Our defenses aren't perfect
 - Patches weren't applied promptly enough
 - Antivirus signatures not up to date
 - 0-days get through
 - Someone brings in an infected USB drive
 - An insider misbehaves
- Now what?
- Most penetrations are never detected
 - This allows continuing abuse, and helps the attackers spread elsewhere

Unexpected Activity

 There could be an intruder even if you have security practice in place

Additional Monitoring

What can IDS realistically do

- Detect successful attacks
- Look for various things that shouldn't be there
 - Infected files
 - Attacks on other machines
 - Packets that shouldn't exist
 - Strange patterns of behavior
- Contain attacks before they spread further
- Clean up penetrated machines—because you'll know they're infected
- Recognition of pattern reflecting known attacks
- Statistical analysis for abnormal activites

What IDS can't do

- Compensate for weak authentication & identification mechanisms
- Investigate attacks without human intervention
- Guess the content of your organization security policy
- Compensate for weakness in networking protocols, for example IP Spoofing

Types of Intrusion Detection System

- Host-base IDSs
- Distributed IDSs
- Network-based IDSs

Types of Intrusion Detection System

- Host-based IDSs
 - Get audit data from host audit trails
 - Detect attacks against a single host
- Distributed IDSs
 - Gather audit data from multiple host and possibly the network that connects the hosts
 - Detect attacks involving multiple hosts
- Network-Based IDSs
 - Use network traffic as the audit data source, relieving the burden on the hosts that usually provide normal computing services
 - Detect attacks from network

Monitoring Point

 More specific rules can be applied for a point close to end nodes

Network and Host IDS

IDS Technology landscape

TECHNOLOGY LANDSCAPE

Preventive Real Time

Network based IDS

- Monitors packets by sniffing
 - Using tapping device or port mirroring
 - IP address on the monitoring interface is *not* necessary
 - Difficult to detect by intruders

Network based IDS

- Can check if the packet:
 - Attacks on other machines
 - That shouldn't exist
 - Goes to unexpected destination IP/port
 - Has problematic header/payload
 - Or strange patterns of behavior, and so on
- Also may count or record packets

Host based IDS

- Monitors network connections, files, logs and activities on the host, and can check
 - Incoming connections
 - User logins
 - Infected files
 - Attacks on other machines
 - Or strange patterns of behavior, and so on

Network IDS vs. Encryption

- A network sniffer can't read encrypted traffic—but neither can an intruder
- Which is more important, intrusion detection or encryption?
- If you give the IDS all keys, it becomes a very tempting target for an attacker
 - If the protocol uses Diffie-Hellman, giving away the keys doesn't help
- But—encrypted traffic from a host that normally speaks plaintext is suspicious; so is plaintext traffic from a host that should use encryption
 - Use traffic analysis in your IDS...

Alert

- You may receive tons of millions of alerts
 - Depending on your detection rules
 - There are many suspicious activities in the Internet today
- You should notice a critical one at least
 - Detection rule is important!

Alert

- False Positive / Type I Error:
 - is the incorrect rejection of a true null hypothesis
 - is when a system raises an incorrect alert
- False Negative / Type II Error:
 - is the failure to reject a false null hypothesis
 - is when an attack pass undetected

Detection Rules

- Should always fit to your system
 - Installing new services
 - Changing network topology
 - Migrating to another system software
 - Terminating a service
- To get useful alerts

Types of Detection

- Signature Based
 - Match patterns against known attacks
 - Catch the intrusions in terms of the characteristics of known attacks or system vulnerabilities
- Anomaly Based
 - Look for unusual behavior
 - Detect any action that significantly deviates from the normal behavior

Types of Detection

Properties

Signatures	Anomalies
 Require an up-to-date database of attack symptoms Can do very well against attacks in the database Completely useless against attacks not listed Including, but not limited to, 0-days Most antivirus software is signature-based 	 Doesn't need an attack database Does need to know what normal—uninfected—behavior is like Can detect 0-day attacks More susceptible to false positives

Signature Based vs Anomaly Based

	Advantage	Disadvantage
Signature-based	Accurately and generate much fewer false alarm	Cannot detect novel or unknown attacks
Anomaly-based	Is able to detect unknown attacks based on audit	High false-alarm and limited by training data.

Signature Detection

- Look for known-bad types of traffic coming from your customers
 - Example: Connection attempts to your dark space
 - Example: Connections to your email submission server from too many strange places
 - Example: Connections to known botnet controller

Anomaly Detection

- Could monitor upstream links for odd traffic
- However—a lot of misbehavior shows up in traffic metadata (even if you're not the NSA)
- Use Netflow to spot oddities or changes in customer behavior
- But—watch out for new applications, or newto-this-customer applications

Intrusion Detection for ISPs

- Monitor your own network—but that's no different than any other enterprise
- Monitor your customers
 - Good: you can help them by detecting problems
 - Good: you can prevent them from clogging your infrastructure
 - Bad: it can be privacy-invasive