DNS Security

TSIG/DNSSEC

Background

The original DNS protocol wasn’t designed with security in
mind

It has very few built-in security mechanism

As the Internet grew wilder & wollier, IETF realized this would
be a problem

— For example DNS spoofing was to easy

DNSSEC and TSIG were develop to help address this problem

DNS Protocol Vulnerability

DNS data can be spoofed and corrupted between master
server and resolver or forwarder

The DNS protocol does not allow you to check the validity of
DNS data

— Exploited by bugs in resolver implementation (predictable transaction

ID)
— Polluted caching forwarders can cause harm for quite some time (TTL)

— Corrupted DNS data might end up in caches and stay there for a long
time

How does a slave (secondary) knows it is talking to the proper

master (primary)?

Question:

www.apnic.net A

®

www.apnic.net A ?

@ www.apnic.net A ?

Resolver

>

: Caching
192.168.5.11

) forwarder
(recursive)

Reminder: DNS Resolving

root-server

o ask net server @ X.gtld-servers.net”
+ glue)

Ad;o cache

“192.168.5.10”

mww.apnic.net A
= gtld-server

@ “go ask ripe server @ ns.apnic.net”
(+ glue)

@ www.apnic.net A ?

apnic-server

Zone administrator@

Zone file

Dynamic
updates

DNS: Data Flow

Caching forwarder

master [€ .
“
"‘3‘7
“"::“‘
R 3003
@
o® Lo*
v ‘
slaves

resolver

DNS Vulnerabilities

Corrupting data Impersonating master

e administrator@

LOhe file 1 Caching forwarder
Dynamic ‘ \
updates
slaves
_ resolver
Cache pollution by

_ Data spoofing
Unauthorized updates

Cache impersonation

-~ NG 4
Y Y

Server protection Data protection

DNS Cache Poisoning

* Caching incorrect resource record that did not
originate from authoritative DNS sources.

e Result: connection (web, email, network) is
redirected to another target (controlled by the
attacker)

DNS Cache Poisoning

www.example.com 192.168.1.99 9
| want to access ‘
www.example.com < QID=64569
QID=64570 (pretending to be
—64571 | the authoritative
‘ > < 9ID=6457 matich! zone)
¢/ < 2
\ % QID=6457
. . I
Client DNS Caching —=====================-=-- > | Root/GTLD

Server D

QID=64571 @

www.example.com 192.168.1.1

Welbserver
(192.168.1.1) ns.example.com

DNS Amplification

* A type of reflection attack combined with
amplification
— Source of attack is reflected off another machine

— Traffic received is bigger (amplified) than the
traffic sent by the attacker

 UDP packet’s source address is spoofed

DNS Amplification Attack

e >
Queries for i ROOT/IGTLD
www.example.com i]
; i

DNS Recursive server =il =
w e

N \ <
M‘!‘/ > ns.example.com
\ www . example.com 192.168.1.1

Compromised k
. \
Machines AN

(spoofed IP) \ — -8
> 'a

I_! Victim Server

Attacker

What is TSIG - Transaction Signature?

A mechanism for protecting a message from a primary to
secondary and vice versa

* Akeyed-hash is applied (like a digital signature) so recipient
can verify message
— DNS question or answer
— & the timestamp

e Based on a shared secret - both sender and receiver are
configured with it

What is TSIG - Transaction Signature?

« TSIG (RFC 2845)

— authorizing dynamic updates & zone transfers
— authentication of caching forwarders

e Used in server configuration, not in zone file

TSIG steps

. Generate secret

. Communicate secret

. Configure servers

. Test

TSIG - Names and Secrets

e TSIG name

— A name is given to the key, the name is what is
transmitted in the message (so receiver knows
what key the sender used)

* TSIG secret value
— A value determined during key generation
— Usually seen in Base64 encoding

TSIG — Generating a Secret

* dnssec-keygen
— Simple tool to generate keys
— Used here to generate TSIG keys

> dnssec-keygen -a <algorithm> -b
<bits> -n host <name of the key>

TSIG — Generating a Secret

 Example

> dnssec-keygen —-a HMAC-MD5 -b 128 —-n HOST nsl-
nsZ2.pcx.net

This will generate the key
> Knsl-ns2.pcx.net.+157+15921

>1s
» Knsl-ns2.pcx.net.+157+15921.key
» Knsl-ns2.pcx.net.+157+15921 .private

TSIG — Generating a Secret

* TSIG should never be put in zone files!!!
— might be confusing because it looks like RR:

nsl-ns2.pcx.net. IN KEY 128 3 157 nEfRX9..bbPn71yQtE=

TSIG — Configuring Servers

* Configuring the key
— in named.conf file, same syntax as for rndc

—key { algorithm ...; secret ...;}

 Making use of the key
— in named.conf file
—server x { key ...; }
— where 'x' is an IP number of the other server

Configuration Example — named.conf

Primary server 10.33.40.46

key nsl-ns2.pcx. net {
algorithm hmac-md5;
secret "APlaceToBe';

}i

server 10.33.50.35 {
keys {nsl-ns2.pcx.net;};

}i
zone "my.zone.test." {
type master;
file “db.myzone”;
allow-transfer {
key nsl-ns2.pcx.net ;};
}i

Secondary server 10.33.50.35

key nsl-ns2.pcx.net {
algorithm hmac-md5;
secret "APlaceToBe'";
}i
server 10.33.40.46 {
keys {nsl-ns2.pcx.net;};
}i
zone "my.zone.test." {
type slave;
file “myzone.backup”;
masters {10.33.40.46;};

}i

You can save this in a file and refer to it in the named.conf

using ‘include’ statement:

TSIG Testing : dig

* You can use dig to check TSIG configuration
— dig @<server> <zone> AXFR -k <TSIG keyfile>

$ dig @127.0.0.1 example.net AXFR \
-k Knsl-ns2.pcx.net.+157+15921.key

 Wrong key will give “Transfer failed” and on
the server the security-category will log this.

TSIG Testing - TIME!

* TSIG is time sensitive - to stop replays
— Message protection expires in 5 minutes
— Make sure time is synchronized
— For testing, set the time
— In operations, (secure) NTP is needed

DNS Vulnerabilities

Corrupting data Impersonating master

e administrator@

LOhe file 1 Caching forwarder
Dynamic ‘ \
updates
slaves
_ resolver
Cache pollution by

_ Data spoofing
Unauthorized updates

Cache impersonation

Server protection Data protection

DNSSEC

Vulnerabilities protected by
DNSKEY / RRSIG / NSEC

@ impersonation

Zone file master [€ Caching forwarder
Rt
. v "‘
Dynamic v
updates
slaves
resolver

Cache pollution by
Data spoofing

DNS Security Extensions (DNSSEC)

Protects the integrity of data in the DNS by establishing
a chain of trust

Uses public key cryptography — each link in the chain
has a public/private key pair

A form of digitally signing the data to attest its validity
Standard is defined in RFC4033, RFC4034, and RFC4035

Guarantees
— Authenticity HEe

— Integrity L0539
. . 7
— Non-existence of a domain 1032
=HEC

SUSD

DNSSEC Resource Records | ;.

Al 0)2d 4l
-JU:)-:

e 3 Public key crypto related RRs
— RRSIG = Signature over RRset made using private key
— DNSKEY = Public key, needed for verifying a RRSIG
— DS = Delegation Signer; ‘Pointer’ for building chains of
authentication
* One RR for internal consistency

— NSEC = Next Secure; indicates which name is the next
one in the zone and which typecodes are available for
the current name

* authenticated non-existence of data

DNSSEC Resource Records

 DNSKEY, RRSIG, and NSEC records provide
mechanisms to establish authenticity and
integrity of data

* DS record provides a mechanism to delegate
trust to public keys of third parties

DNSSEC RRs

Data authenticity and integrity by signing the
Resource Records Sets with private key

Public DNSKEY is used to verify the RRSIG

Children sign their zones with their private key

— Authenticity of that key established by signature/
checksum by the parent (DS)

Ideal case: one public DNSKEY distributed

RR’s and RRsets

e Resource Record:

Name TTL class type rdata
www.example.net. 7200 IN A 192.168.1.1

 RRset: RRs with same name, class and type:
www.example.net. 7200 IN A 192.168.1.1
A 10.0.0.3
A 172.10.1.1

* RRsets are signed, not the individual RRs

DNSKEY

* Contains the zone’s public key
* Uses public key cryptography to signh and
authenticate DNS resource record sets (RRsets).

 Example: ‘
L DNSKEY algorithm number

irrashai.net. IN DNSKEY 256 3 5
(AWEAAagrVFdI9xyFMQRJ04D1kL0OdgUCtogviS+FGI9Z6Au3hlERe4ET13L
X49CelOFahdR2wPZyVeDvH6X4glLnMQJsd70F14S9Ng+hLkgpm/n+otE
kK1iXGZzZnd4vW0okuCOhHG2XU5zJhkct73FZzbmBvGxpF4svo5PPWZgVb
H48T5Y/9) ; key id = 3510

— Public key (base64)

DNSKEY

* Also contains some timing metadata —as a
comment in the key file

; This 1s a key-signing key, keyid 19996, for myzone.net.
; Created: 20121102020008 (Fri Nov 2 12:00:08 2012)
; Publish: 20121102020008 (Fri Nov 2 12:00:08 2012)
; Activate: 20121102020008 (Fri Nov 2 12:00:08 2012)

RRSIG

* The private part of the key-pair is used to sign the resource record set
(RRset) per zone

* The digital signature per RRset is saved in an RRSIG record

irrashai.net. 86400 NS NS.JAZZI.gQ%peggwd
86400 NS NS.IRRASHAI.¥ET. . worith
86400 RRSI NS 5 2 864%‘5'azﬂgmureagorI m

20121202010328°20729°1:02010528

3510 irrashai.net

Y2J2NQ

+CVGORIQVCHY 256 f £1iwSmpOOQTQUFS
Signature expiry

vUHSHyUbbhmES56eJimgDhXb8qwl /

Fj3140/km

Date signed :
1zmQC5CmgugB/qjgLHZbuvS{£dow

+UCwkxbwx

3HonAPr3C
+0HVgP8rSqGRgSgOVbR7LzNeayl

BkumLDoriQxceV4z3d2jFv4ArnM=)

NSEC / NSEC3

* Next Secure

* Forms a chain of authoritative owner names in
the zone

e Lists two separate things:
— Next owner name (canonical ordering)
— Set of RR types present at the NSEC RR’s owner name

* Also proves the non-existence of a domain

irrashai.net. NSEC blog.irrashai.net. A NS SOA MX
RRSIG NSEC DNSKEY

NSEC / NSEC3

* “The last NSEC wraps around from the last
name in the ordered zone to the first”

* Each NSEC record also has a corresponding
RRSIG

NSEC RDATA

 Points to the next domain name in the zone
— also lists what are all the existing RRs for “name”

— NSEC record for last name “wraps around” to first name in
zone

e Used for authenticated denial-of-existence of data
— authenticated non-existence of TYPEs and labels

NSEC Record example

SORIGIN example.net.
@ SOA

NS NS.example.net.
DNSKEY

NSEC mailbox.example.net. SOA NS NSEC DNSKEY RRSIG

mailbox A 192.168.10.2

NSEC www.example.net. A NSEC RRSIG
WWW A 192.168.10.3

TXT Public webserver

NSEC example.net. A NSEC RRSIG TXT

Delegation Signer (DS)

Zones

* |n this example, irrashai.
from .net. This is how it

Establishes the chain of trust from parent to child

Found in the parent’s zone file

net has been delegated
ooks like in .net zone file

irrashai.net. IN NS nsl.

Key ID

rrashailnet.

NS ns2.irra#hai.

IN DS 19996 5 1

net|

u(—a
CF96B018A496CD1AGBEET
C80A37EDFC6ABBF8175)

IN DS 19996 5 2 (

6927A531BOD89ATA4F13E11031
4CT22EC156FF926D2052C7D8D70C50

14598CE9)

Delegation Signer (DS)

* Delegation Signer (DS) RR indicates that:
— delegated zone is digitally signed
— indicated key is used for the delegated zone

 Parent is authorative for the DS of the childs zone
— Not for the NS record delegating the childs zone!
— DS should not be in the childs zone

Types of Keys

Zone Signing Key (ZSK)

— Sign the RRsets within the zone

— Public key of ZSK is defined by a DNSKEY RR
Key Signing Key (KSK)

— Signed the keys which includes ZSK and KSK and may
also be used outside the zone

Trusted anchor in a security aware server
Part of the chain of trust by a parent name server

Using a single key or both keys is an operational
choice (RFC allows both methods)

Creation of keys

* Zones are digitally signed using the private key

* Can use RSA-SHA-1, DSA-SHA-1 and RSA-MD5
digital signatures

* The public key corresponding to the private

key used to sign the zone is published using a
DNSKEY RR

Chain of Trust

* DNSSEC is based on trust
* Root is on top of the chain of trust.

Implementing DNSSEC

DNSSEC - Setting up a Secure Zone

* Enable DNSSEC in the configuration file (named.conf)

— dnssec—-enable yes; dnssec-validation
ves;

* Create key pairs (KSK and ZSK)

— dnssec-keygen —-a rsashal -b 1024 -n
zone champika.net

e Publish your public key
* Signing the zone
* Update the config file

— Modify the zone statement, replace with the signed zone
file
* Test with dig

Updating the DNS Configuration

* Enable DNSSEC in the configuration file (named.conf)

options {
directory “...”
dnssec—-enable vyes;

dnssec-validation yes;

Y

 Other options that can be added later
— auto-dnssec { off | allow | maintain} ;

— These options are used to automate the signing and key
rollover

Creating key pairs
* To create ZSK

dnssec-keygen -a rsashal -b 1024 -n zone
<myzone>

* To create KSK

dnssec—-keygen —-a rsashal -b 1400 -f KSK -n
zone champika.net

Publishing your public key

* Using SINCLUDE you can call the public key
(DNSKEY RR) inside the zone file

SINCLUDE /path/Kchampika.net.+005+33633.key ; ZSK
SINCLUDE /path/Kchampika.net.+005+00478.key ; KSK

* You can also manually enter the DNSKEY RR in
the zone file

Signing the zone

dnssec—-signzone —o champika.net -t -k
Kchampika.net.+005+00478

db.champika.net Kchampika.net.
+005+33633

 Once you sign the zone a file with a .signed extension
will be created
- db.champika.net.signed

Signing the Zone
« Sign the zone using the secret keys:

dnssec-signzone —o <zonename> -N
<INCREMENT> -f <output-file> -k <KSKfile>
<zonefile> <ZSKfile>

dnssec-signzone —-o champika.net
db.champika.net Kchampika.net.+005+33633

* Once you sign the zone a file with a .signed extension
will be created

— db.champika.net.signed

Signing the Zone

* Note that only authoritative records are
signed NS records for the zone itself are

sighed
— NS records for delegations are not signed

— DS RRs are signed!
— Glue is not signed

* Difference in the file size
— db.champika.net vs. db.champika.net.signed

Publishing the Zone

* Reconfigure to load the sighed zone. Edit
named.conf and point to the signed zone.

zone “champika.net” {

type master;

file “db.champika.net”;

file “db.champika.net.signed”;

} s

Pushing the DS record

 The DS record must now be published by the
parent zone.

* Contact the parent zone to communicate the
KSK to them.

Testing the server

* Ask a dnssec enabled question from the server
and see whether the answer contains dnssec-
enabled data

— Basically the answers are signed

dig @localhost www.champika.net
+dnssec +multiline

Testing with dig: an example

| @ OO Terminal — bash — 144x46

| bash-3.2% dig @localhost www.champika.net +dnssec +multiline

‘; <<=> D106 9.6.0-APPLE-P2 <<>> @localhost www.champika.net +dnssec +multiline
; (3 servers found)

5 global options: +cmd

;5 Got answer:

3 ->»HEADER<<- opcode: QUERY, status: NOERROR, id: 37425

;3 flags: gqr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 3
;3 OPT PSEUDOSECTION:

; EDNS: version: @, flags: do; udp: 4096

;3 QUESTION SECTION:

s . champika.net. IN A

33 ANSWER SECTION:

wiw . champika.net. 36400 IN A 192.168.1.2

waw . champika.net. 86400 IN RRSIG A 5 3 86400 20091123163643 (
20091024163643 22827 champika.net.
EyplIVyQyYBLKOX2u/LT1+40x% jBom¥zLrcdwSErgioMb
pGyDWDLzP+FTbE3QCFBMLNDt2AGo YctylcfY4119sHkw
fuebhTQTSmOLh1isBk YKQBY6ZDS0G1iJQgalkBGmLtVkPh
3GJ8Z1UhbwKcGGK1 3doAa+SK8mxoMINCudiNNeg= D

33 AUTHORITY SECTION:

champika.net. 86400 IN NS ns.champika.net.

champika.net. 86400 IN RRSIG NS 5 2 86400 20091123163643 (
20091024163643 22827 champika.net.
CZsPewlhPHpYT18wPh@SQhDEpH tOI f2mL VshyviGKgdno
ISNYo1jmX@LyIns+03DZz/ 2+ TtwoQCRFLbFIO9YMS3fx
BHGYqFDeGI tyVx 3oBpmTudtMuZ+odSWFS+LC1sISEP/N
QvUDgtWrj8+Z0wyVjBale+I51h29ek7Mzk7+P4E= 3

;3 ADDITIONAL SECTION:

ns.champika.net. 86400 IN A 192.168.1.1

ns.champika.net. 86400 IN RRSIG A 5 3 86400 20091123163643 (
20091024163643 22827 champika.net.
eTP05c4GscnoC9YS5sRovgDo02WgCriTSarl7 YZhINc tXT
vkmULlni+wguwghtxezfB/EudI69bMnpQoX2zWUDtLUCM
+FVLsFx4Bbt+BjPEIKY®3g9wvwEIdKkR/ pxyE1k JN IWmI
tR49P2dyw1zqqTyvnj3F1yuFRTLHhIvfcYc+n8u= D

75 Query time: 3 msec
;3 SERVER: 127.0.0.1#53(127.0.0.1)
33 WHEN: Sun Oct 25 03:40:38 2009
75 MSG SIZE rcvd: 610

Questions

