3-2-3 Provisioning DNSsec with OpenDNSsec

The Bad News

DNSsec Design Complex Software is Complex

The Good News

OpenDNSsec Works

Architecture

Key and Signing Policy

- How to sign a zone is described by a policy
- Allows choice of key strengths, algorithm, key and signature lifetimes, NSEC/NSEC3, etc.
- Can have anything between one policy for all zones to one policy per zone.

KASP Enforcer

- Handles the management of keys:
 - Key creation using HSM
 - Key rolling

Chooses the keys used to sign the zone.

HSM

- Hardware Security Module
 - Stores the keys
 - Hardware acceleration to sign records
- Standard interface via PKCS#11 API
- SoftHSM available with OpenDNSSEC

Signer Engine

- Automatic signing of the zones
 - Can reuse signatures that are not too old
 - Can spread signature expiration time over time (jitter)
- Maintains the NSEC/NSEC3 chain
- Updates SOA serial number

KASP Auditor

- Checks that the signer and enforcer work the way they are supposed to, e.g.
 - Non DNSSEC RRs are not added or removed
 - Policy is being followed
- Can stop the zone distribution if needed
- Written in Ruby