DNS – повторительный курс

Обзор

- Цели этого курса
- Что такое DNS ?
- DNS: как он сделан и как он работает?
- Как работают запросы?
- Типы записей
- Кэширующие и авторитетные серверы
- Делегирование: домены и зоны
- Поиск ошибок: где находится проблема?

Цели этого курса

- Освежить основы DNS, включая механизмы запросов, делегирование, и кэширование.
- Добиться понимания DNS, достаточного для конфигурации кэширующего DNS сервера, и для отладки обычных проблем DNS, как локальных, так и удаленных (в сети Internet)

Что такое DNS?

• Система для преобразования имен в ІР адреса:

```
nsrc.org \rightarrow 128.223.157.19
www.afrinic.net \rightarrow 2001:42d0::200:80:1
```

• ... и обратно:

Что такое DNS?

- DNS предоставляет и другую информацию:
 - куда направлять почту для домена
 - кто отвечает за какую-либо систему
 - географическая информация
 - и т.д...

• Как находить всю эту информацию?

Основные инструменты DNS

• Использование команды host:

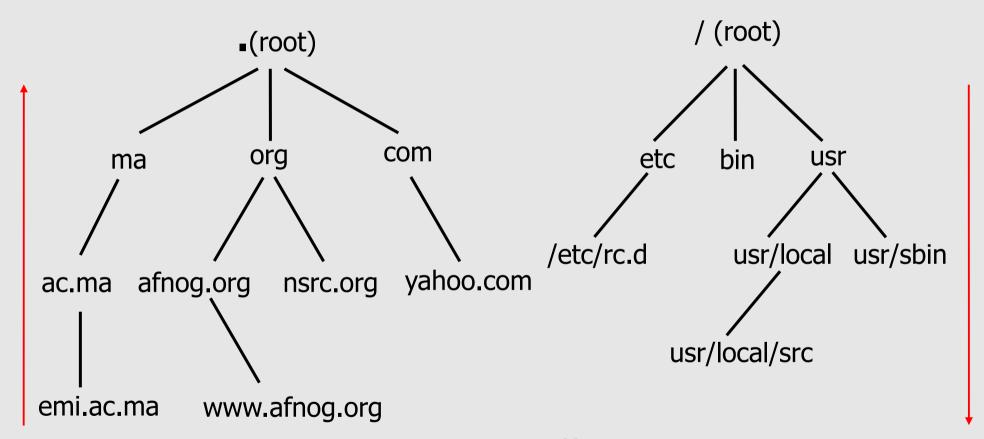
```
# host nsrc.org.
nsrc.org. has address 128.223.157.19
# host 128.223.157.19
```

19.157.223.128.in-addr.arpa domain name pointer nsrc.org.

Основные инструменты DNS

• Сервер с IPv6:

pointer www.afrinic.net.


Основные инструменты DNS

• Попробуйте сами с другими именами — вначале найдите нижеследующие имена, потом сделайте то же самое с полученными IP адресами:

```
www.yahoo.com
www.nsrc.org
ipv6.google.com
```

- Всегда ли поиск IP соответствует имени? Почему?
- Где команда 'host' находит информацию?

Как устроен DNS?

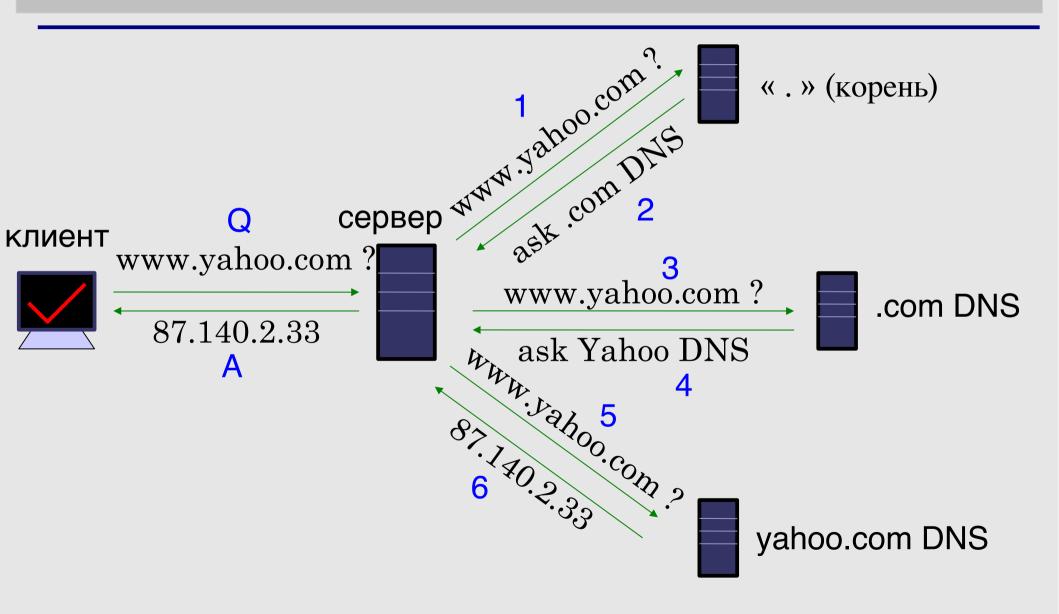
База данных DNS

Файловая система Unix

... образует дерево

Как устроен DNS?

- DNS имеет иерархическую структуру
- DNS администрируется распределенно не существует определенного центра, который бы администрировал все данные в DNS
- Такое распределение администрирования называется *делегированием*


Как работает DNS?

- Клиенты, используя механизм, называемый разрешением имен, опрашивают серверы это называется запросом
- Запрашиваемый сервер попытается найти ответ от имени клиента
- Сервер работает рекурсивно, сверху (от корня) донизу, до тех пока не найдет ответ, опрашивая другие серверы когда нужно — сервер ссылается на другие серверы

Как работает DNS?

- Клиент (web броузер, почтовая программа, ...) использует систему разрешения имен операционной системы для нахождения IP адреса.
- Например, если мы идем на страницу www.yahoo.com:
 - Броузер спрашивает OS «Мне нужен IP для www.yahoo.com»
 - OS находит из конфигурации системы разрешения имен, какой сервер спросить, и посылает тому запрос
- B UNIX, /etc/resolv.conf хранит конфигурацию системы разрешения имен

DNS запрос

Tcpdump деталей запроса

• Станьте администратором на сервере:

```
$ sudo -s
passwd:
# tcpdump -s1500 -n port 53
```

• В другом окне или экране:

```
# host ... (что угодно)
```

Детали запроса – пример

```
• 1: 18:40:38.62 TP 192.168.1.1.57811 > 192.112.36.4.53:
  29030 [lau] A? hl-web.hosting.catpipe.net. (55)
• 2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811:
  29030- 0/13/16 (540)
• 3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53:
  7286 [lau] A? hl-web.hosting.catpipe.net. (55)
• 4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811:
  7286 \text{ FormErr-} [0q] 0/0/0 (12)
• 5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53:
  50994 A? h1-web.hosting.catpipe.net. (44)
• 6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811:
  50994- 0/3/3 (152)
• 7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53:
  58265 [lau] A? hl-web.hosting.catpipe.net. (55)
• 8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811:
  58265* 1/2/3 A 83.221.131.6 (139)
```

Детали запроса - анализ

• Мы используем анализатор пакетов (wireshark) для того, чтобы просмотреть содержимое запроса...

http://www.wireshark.org/

<u>File Edit View Go Capture Analyze Statistics Telephony Tools Help</u>															
	a a (at (at		3 ×	2 (Q 4	• 🔷 🕏	₽ ₹	业 ■		⊕ () (I)	+ +	•
Filter: ▼ → Expression															
No.	. Time			So	urce		Destin	ation	Protoc	col Info					Â
	1 0.00000	90		69	. 4. 231	. 52	10.10.2	. 171	HTTP	Contin	uation	or nor	I-HTTP 1	traffic	U
	2 0.00047	77		10	. 10.2.	171	69.4.23	1.52	TCP				Seq=1 /		
	3 0.02660						Broadca		ARP				? Tel		
	4 0.07346				_			g-tree-(0/00:01		
	5 0.07480						Broadca		ARP			0.2.168	,	l 10.10	_
	6 0.20601						Broadca		ARP	Who ha				l 10.10	
	7 0.20706						10.10.2		NBNS	Name q				C 10.10	
	8 0.21469						ff02::1		DHCPv6			D WVLK	10<10>		
	9 0.22423				. 10. 2.							TTD/1 1			
								. 255. 250				TTP/1.1			
	10 0.29065						10.10.2		HTTP] Cont:		
	11 0.29109				. 10.2.		69.4.23		TCP				Seq=1 /		¥
4	12 0 4440	1(1		10	10 2	166	192 248	х ч/	DNS	Standa	ra alle	rv A To	client	dnc	
▷ Frame 1 (1514 bytes on wire, 1500 bytes captured)															
▶ Et	hernet II,	Src: 0l	icom cb:	:4f:a2 (00:00:	24: cl	b: 4f: a2)	, Dst: H	HewlettP	8c:91:8b	(00: la	:4b:8c	91:8b)		
▷ In	ternet Pro	tocol. S	rc: 69.4	4. 231. 52	(69.4	4.231	.52). D:	st: 10.10	. 2. 171	(10.10.2.1	71)				
_	ansmission											Ack.	Lan	1///2	
				JC, JIC	rorc.	псср	(00), 1	/3C FOIC.	43070	(43070), 3	cq. 1,	ACK.	L, Leii.	1440	
	pertext Tr														
[P	acket size	limited	during	capture	: HTTF	r tru	ncated]								
0000	00 la 4b	8c 91 9k	00 00	24 ch /	1f a2 i	രെ രര	45 00	K	. \$.0	F					1
0010	05 dc 78								+E						
0020	02 ab 00								i						U
0030	00 0e 45								S						
0040	c2 39 86								;^						L
0050									k'ı						*

Конфигурация разрешения имен

- Откуда ваш компьютер знает, какой сервер запроить для получения ответов на DNS запросы?
- B UNIX, **смотрите** /etc/resolv.conf
- Сейчас загляните в этот файл, и убедитесь, что в нем присутствует строка типа:

nameserver a.b.c.d

ИЛИ

nameserver ip:v6:ad:dr:es:ss ... где a.b.c.d - IP/IPv6 адрес рабочего сервера DNS.

Нахождение корня...

• Первый запрос адресован к:

```
192.112.36.4 (G.ROOT-SERVERS.NET.)
```

- Откуда серверу известно, по каким адресам расположены корневые серверы?
- Проблема курицы и яйца
- Каждый DNS сервер хранит список корневых серверов и их IP адресов
- B cepsepe BIND, named.root

Более детальная картина при помощи 'dig'

- команда 'host' несколько ограничена она хороша для поиска, но недостаточна для отладки.
- команда 'dig' дает больше деталей
- dig показывает много интересных вещей...

Более детальная картина при помощи 'dig'

```
ns# dig @147.28.0.39 www.nsrc.org. a
; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.nsrc.org
; (1 server found)
;; global options:
                   printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4,
ADDITIONAL: 2
;; QUESTION SECTION:
; www.nsrc.org.
                                         Α
                                 TN
;; ANSWER SECTION:
                                                  128, 223, 162, 29
www.nsrc.org.
                        14400
                                 TN
                                         Α
;; AUTHORITY SECTION:
                         14400
                                         NS
                                                  rip.psq.com.
                                 TN
nsrc.orq.
                         14400
                                 TN
                                         NS
                                                  arizona.edu.
nsrc.org.
;; ADDITIONAL SECTION:
                                                  147.28.0.39
rip.psq.com.
                         77044
                                 TN
                                         Α
                                                  128.196.128.233
arizona.edu.
                          2301
                                 TN
;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
;; MSG SIZE rcvd: 128
```

```
noc# dig www.afrinic.net anv
; <<>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10
:: OUESTION SECTION:
;www.afrinic.net.
                         IN
                             ANY
;; ANSWER SECTION:
www.afrinic.net. 477
                                      2001:42d0::200:80:1
                         IN
                             AAAA
www.afrinic.net. 65423
                         TN
                                      196.216.2.1
                             Α
;; AUTHORITY SECTION:
afrinic.net.
                65324
                         IN
                             NS
                                      sec1.apnic.net.
afrinic.net.
                                      sec3.apnic.net.
                65324
                             NS
                         IN
afrinic.net. 65324
                                      nsl.afrinic.net.
                         IN
                             NS
                                      tinnie.arin.net.
afrinic.net. 65324
                             NS
                         IN
afrinic.net.
             65324
                                      ns.lacnic.net.
                         IN
                             NS
afrinic.net.
                65324
                         IN
                             NS
                                      ns-sec.ripe.net.
;; ADDITIONAL SECTION:
ns.lacnic.net.
                151715
                            Α
                                      200.160.0.7
                         IN
ns.lacnic.net.
                65315
                                      2001:12ff::7
                             AAAA
                         IN
ns-sec.ripe.net. 136865
                         IN
                             Α
                                      193.0.0.196
ns-sec.ripe.net. 136865
                             AAAA
                         IN
                                      2001:610:240:0:53::4
nsl.afrinic.net. 65315
                             Α
                         IN
                                      196.216.2.1
tinnie.arin.net. 151715
                         IN
                             Α
                                      168.143.101.18
sec1.apnic.net. 151715
                                      202.12.29.59
                         IN
                            Α
                            AAAA
sec1.apnic.net. 151715
                                      2001:dc0:2001:a:4608::59
                         IN
sec3.apnic.net. 151715
                         IN
                             A
                                      202.12.28.140
sec3.apnic.net. 151715
                         IN AAAA
                                      2001:dc0:1:0:4777::140
;; Query time: 1 msec
;; SERVER: 196.200.218.1#53(196.200.218.1)
```

;; WHEN: Tue May 27 08:48:13 2008

;; MSG SIZE rcvd: 423

Вывод команды dig

- Интересные поля:
 - раздел флагов: qr aa ra rd
 - статус
 - раздел ответа
 - авторитетный раздел
 - TTL (числа в левой колонке)
 - время выполнения запроса
 - сервер
- Обратите внимание на типы записей 'А' и 'АААА' в выводе.

Типы записей

• Основные типы записей:

• A, AAAA: IPv4, IPv6 адреса

• NS: DNS сервер

• МХ: почтовый сервер

• CNAME: каноническое имя

(псевдоним)

• PTR: Реверсивная информация

Кэширование и авторитетность

- В выводе команды dig, и в последующих выводах, мы заметили уменьшение времени запроса при повторении запроса.
- Ответы кэшируются DNS сервером, выполняющим запрос, для ускорения запросов и для экономии ресурсов сети
- Значение TTL управляет временем кэширования
- DNS серверы можно разделить на две категории: кэширующие и авторитетные.

Авторитетные серверы

- Обычно, авторитетные серверы отвечают только на запросы об информации, для которой они являются авторитетным источником, т.е. об информации, хранящейся на самом сервере (в файле или в базе данных)
- Если они не знают ответа, они укажут на авторитетный источник, но не будут обрабатывать запрос рекурсивно.

Кэширующие серверы

- Кэширующие серверы перенаправляют запросы от имени клиента, и кэшируют ответы на будущее.
- Кэширование и авторитетность могут быть реализованы в одной и той же программе, но смешивание функциональности не рекомендуется (риски защиты данных + путаница)
- TTL ответа определяет, как долго ответ будет кэширован без повторения рекусривного запроса.

Значения TTL

- Уменьшение значения TTL и истечение срока кэширования
- Сделайте несколько раз запрос об записи типа А для www.yahoo.com:

```
# dig www.yahoo.com
```

• Что вы наблюдаете относительно времени запроса и значения TTL?

SOA

• Давайте спросим SOA для домена:

SOA

- Выделены первые два поля:
 - SOA (начало авторитетности), которое администратор установил в имя «исходного» сервера для данных домена (это не всегда соблюдается)
 - RP (ответственное лицо) email адрес (в котором первое '@' изменено на '.') для контакта в случае технических проблем.

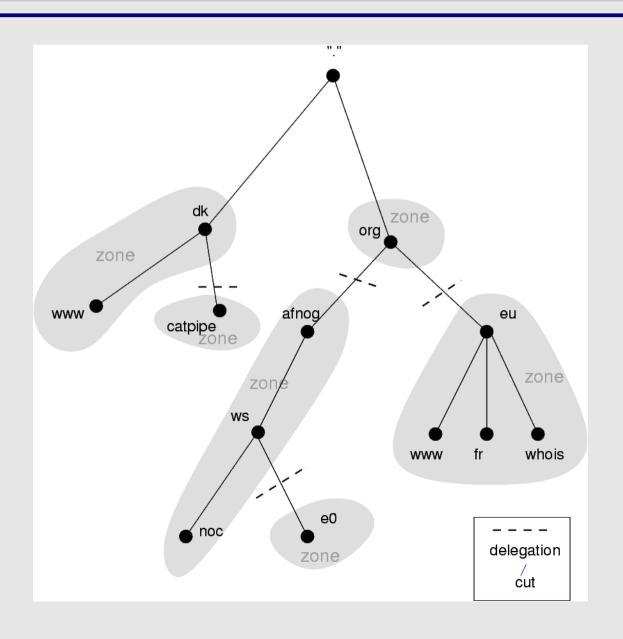
SOA

- Другие поля:
 - serial: серийный номер зоны, используется для репликации зоны между двумя серверами DNS
 - refresh: как часто реплицирующий сервер должен сверяться с мастер-сервером, чтобы узнать, не изменилась ли зона
 - retry: как часто пытаться повторять сверку, если мастер-сервер не отвечает.
 - expire: если мастер-сервер не отвечает слишком долго, перестать отвечать на клиентские запросы о зоне.
- Почему expire необходим?

Эксплуатация кэширующего сервера

- Иметь работающий кэширующий сервер на локальной машине может быть полезно
- Легко настроить, например на FreeBSD:
 - добавьте named_enable="YES" в /etc/rc.conf
 - запустите named: /etc/rc.d/named start
- Что было бы хорошей проверкой того, что named работает?

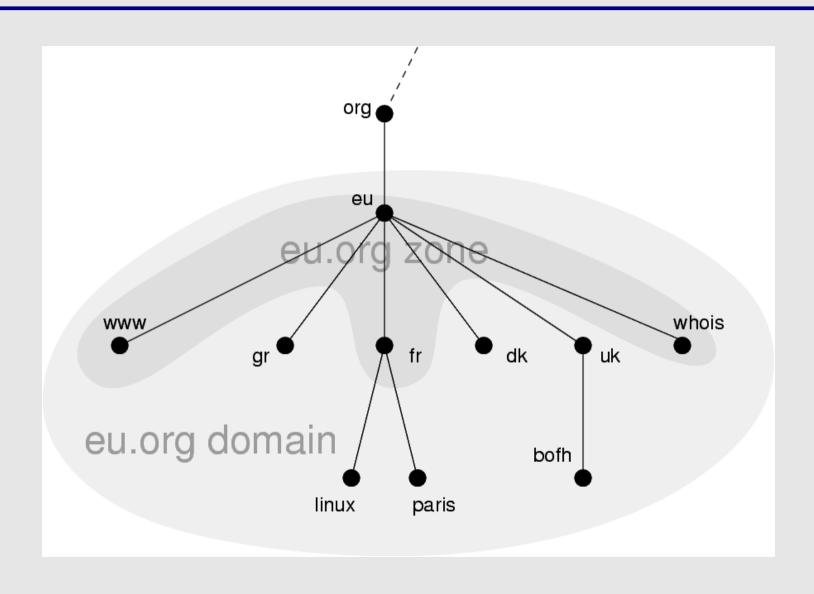
Эксплуатация кэширующего сервера


• Когда вы уверены в том, что ваш кэширующий сервер работоспособен, добавьте его в конфигурацию локальной системы разрешения имен (/etc/resolv.conf):

nameserver 127.0.0.1

Делегирование

- Мы упомянули, что одним из преимуществ DNS является тот факт, что система администрируется распределенно. Это называется делегированием.
- Мы делегируем на границе администрирования, когда мы хотим отдать управление доменом нижнего уровня:
 - отделу внутри большой организации
 - организации внутри страны
 - субъекту, представляющему домен целой страны


Делегирование

Делегирование: домены и зоны

- Когда мы говорим о целом поддереве, мы говорим о *доменах*
- Когда мы говорим о части домена, администрируемой отдельно, мы говорим о зонах

Делегирование: домены и зоны

Поиск ошибок: doc

- Когда вы сталкиваетесь с проблемами с вашей сетью, web сервисом или emailom, вы не всегда подозреваете проблему с DNS.
- Даже если вы думаете, что проблема с DNS, не всегда очевидно, где именно проблема, ибо DNS довольно сложен.
- 'doc' хороший инструмент для быстрого поиска ошибок конфигурации
- /usr/ports/dns/doc установите его!
- Давайте с ним немного поиграемся...

Заключение

- DNS предмет обширный
- Требуется большой опыт для правильной идентификации проблем кэширование и рекурсия особенно сбивают с толку
- Не забудьте, что существует несколько сервер для одних и тех же данных, и вы не всегда запрашиваете какой-то один из них
- Практика, практика, практика!
- Не бойтесь задавать вопросы...

Вопросы?

