Arduino - an Introduction

Sebastian Büttrich NSRC

based on courses given at ICTP Trieste & the IT University of Copenhagen last edit: AIT Bangkok, December 2014

What is Arduino?

Arduino is an open-source electronics prototyping platform

based on flexible, easy-to-use hardware and software.

It's intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.

http://arduino.cc/

Who makes Arduino?

ShapeOko: NES + Arduino + 3 Axis Mill = Awesome!

by Edward Ford + 3 years ago + 13,601 views

Using a classic NES controller to manipulate the X,Y, and Z axis' of my DIY CNC

HD

Working pipboy 3000

by MyMagicPudding - 1 yearago - 1,102,997 views

Update: Tutorial: http://mymagicpudding.blogspot.co.uk/2013/02/makingpinhov-

HD

Arduino Quadcopter Progress 1

by GamecubePerson111 • 7 months ago • 181 views

Arduino powered Quadcopter test.

30 Arduino Projects for the Evil Genius

by Simon Monk - 2 years ago - 314,296 views

This is an introduction to the book '30 **Arduino** Projects for the Evil Genius' by

Awesome Arduino Robot Avoiding Walls

by AweseomePossumCraft • 1 month ago • 69 views

Using the Four Wheel Platform, an Arduino with an Adafruit AFMotor Shield and a

HD

The **Arduino team** is:

Massimo Banzi,
David Cuartielles,
Tom Igoe,
Gianluca Martino,
and David Mellis.

It is carried by a huge global crowd of enthusiast developers.

By 2014, an estimated 1.5 million Arduinos have been sold.

Arduino – Getting started

http://arduino.cc

Arduino is all about community and sharing!
Anything you might need

has probably already been tried and documented somewhere! Just try: https://duckduckgo.com/?q=arduino

Some good starting points are: Sparkfun, Adafruit, Seeedstudio, Maker zines

Thailand sites/shops include: http://www.arduino.in.th/http://www.arduinothaishop.com/

Arduino – Getting started

Your Guide to the SparkFun Inventor's Kit for Arduino

Sparkfun Inventors KIT (SIK) & Guide

https://www.sparkfun.com/products/12060

Arduino – Getting started

https://learn.adafruit.com/adafruit-arduino-selection-guide/selecting-an-arduino

Why Arduino?

Arduino is

Inexpensive (~ \$20 for official, from ~\$5 for copies)

Quite easy to learn

Flexible

Low power

Good for sensing and controlling

Great for use in education

Application: Arduino for WSN

Today, many WSN systems are expensive and not transparent to their users.

Arduino offers a great chance to make WSN

more affordable

more open

As Arduino is a prototyping and experimenting platform, it will **not be optimal for every aspect** - but, once a good solution has been found, it may become a new Arduino-type hardware design, optimized for the given task.

Tech details - programming Arduino

The software consists of a standard programming language compiler and a boot loader that executes on the microcontroller.

The programming language is based on wiring,

the development environment is based on *processing* - both *wiring* and *processing* are open source components.

Tech details – Arduino vs C/C++

Those familiar with C/C++ will find many similarities.

In terms of syntax, Arduino is (almost) identical to C++. however, it only implements a *subset* of full C++,

It links against the hardware-specific AVR_Libc, and thus is not fully portable.

Objects can not be created dynamically, e.g.

The size of an array has to be known at compile time.

Tech details – Arduino vs processing

Arduino/Processing Language Comparison

The Arduino language (based on Wiring) is implemented in C/C++, and therefore has some differences from the Processing language, which is based on Java.

Arrays

Arduino	Processing
int bar[8]; bar[0] = 1;	int[] bar = new int[8]; bar[0] = 1;
int foo[] = { 0, 1, 2 };	int foo[] = { 0, 1, 2 }; or int[] foo = { 0, 1, 2 };

Loops

Arduino	Processing
inti;	for (int i = 0; i < 5; i++) $\{\}$
for (i = 0; i < 5; i++) { }	

Printing

Arduino	Processing
Serial.println("hello world");	println("hello world");
inti=5; Serial.println(i);	inti=5; println(i);
<pre>int i = 5; Serial.print("i = "); Serial.print(i); Serial.println();</pre>	int i = 5; println("i = " + i);

Arduino - elements

The arduino language has 3 main elements:

Structure, Variables, Functions.

Structure

The most important two parts of any Arduino program:

setup() executed once in the start

loop() executed repeatedly (looped)

(There's no main())

Tech details - software

The language offers the familiar set of operators, variables, functions.

An important concept is the use of libraries.

For a full description of the language, see

http://arduino.cc/en/Reference/HomePage

Tech details - IDE

```
SEBA spectrometer 01 | Arduino 1.0.4
File Edit Sketch Tools Help
                                                                                 ø.
  SEBA_spectrometer_01 §
SEBA Spectrometer starts with
SparkFun Inventor's Kit - multi color LED sketch
and adds LDR sensing and network
*/
//LEDs
const int RED PIN = 9;
const int GREEN PIN = 10;
const int BLUE PIN = 11;
//SENSOR
const int sensorPin = 0:
int lightLevel, high = 0, low = 1023;
//TIMING
int MAIN DELAY = 1000; // In milliseconds, for discrete color series
int DISPLAY TIME = 100; // In milliseconds
void setup()
  Serial.begin(9600);
                                      Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328 on /dev/ttyUSB0
```


Tech details - hardware

Arduino boards are based around Atmel processors (ATM168, ATM328).

The main board can be extended by a wide offering of so-called **shields**, for example

- Network shields for all kinds of wireless and wired communications,
- Sensor shields for hundreds of sensing applications.

Think of shields as a kind of adapter, often providing some extra functionality

Tech details - hardware

Typical boards:

- 8 bit controllers (the 2012 DUE board was first with 32 bit)
- 8 / 16 Mhz
- Typically 32k of memory for code, up to 512k
- Run on 3.3 or 5 Volts (some can take more)

http://arduino.cc/en/Products.Compare

An Arduino board

Arduino boards in many forms

Arduino boards in many forms

Arduino Uno

Arduino Leonardo

Arduino Due

Arduino Esplora

Arduino Mega 2560

Arduino Mega ADK

Arduino Ethernet

Arduino Mini

LilyPad Arduino USB

Arduino Pro

Arduino Fio

Arduino Micro

Arduino Nano

Arduino boards in many forms

Do your own board

First revision

Arduino boards: Seeeduino

Arduino on chip: ATTiny

Arduino on chip: ATTiny

ATtiny Microcontroller Pin-Outs

ATtiny45 / ATtiny85

ATtiny44 / ATtiny84

Arduino - actuators

Actuators

LED

piezo/buzzer

heat plate

relay

motor

fan

Arduino - sensors

Sensors

button

heat sensor

proximity sensor

accelerometer

piezo/

pressure sensor

flex sensor

Arduino - kit

Arduino – Sparkfun SIK

Shields: Arduino WiFi Shield

Arduino WiFi Shield

Δ

Arduino WiFi Shield Back

Arduino WiFi Shield Front

Shields: The Grove system

Shields: The Grove system

Grove - Water Sensor

Grove - Magnetic Switch

Grove - Alcohol Sensor

Grove - RTC

Grove - Differential Amplifier

Grove - Electricity Sensor

Grove - Sound Sensor

Grove - IR Distance Interrupt

Grove - Tilt Switch

Grove - Encoder

Grove - I2C Color Sensor

Grove - Sound Recorder

Grove - Moisture Sensor

Grove - PIR Motion Sensor

Grove - Infrared Reflective Sensor

Arduino at ITU: Arducopters

Size: 9 cm x 9 cm

Flight time: 7 min

Charge time: 20 min

ITU: iPlant project

Project Description

People enjoy plants, their benefits and the feeling related to nurturing them. However for most people it becomes challenging to keep them healthy and alive. To accommodate this challenge we have developed a prototype, which makes a plant more selfsufficient, watering itself from a large water tank and providing itself with artificial sunlight. The prototype reports status of its current conditions and also reminds the user to refill the water tank. The system automation is designed to be assistive to the user. We hope that through this prototype people will enjoy having plants without the challenges related to absent or forgetfulness. IPlant is a step towards modern and future homes. Utilising the concepts of pervasive computing where users have complete control over their spaces.

Documentation

- IPlant Report
- Appendix

Showcase

- Data Collection
- Overview
- User Settings

Video

- Concept
- Sensor Monitoring

ITU: NoXDroid / bAIR project

IoT / ITU - bAIR.dk

IoT / Energy Futures ITU

IoT / Energy Futures ITU

10% reduction in power consumption over one year, without any big changes - just understanding and adjusting

IoT / Energy Futures ITU

COSMGrid - a low cost solar micro-grid

