

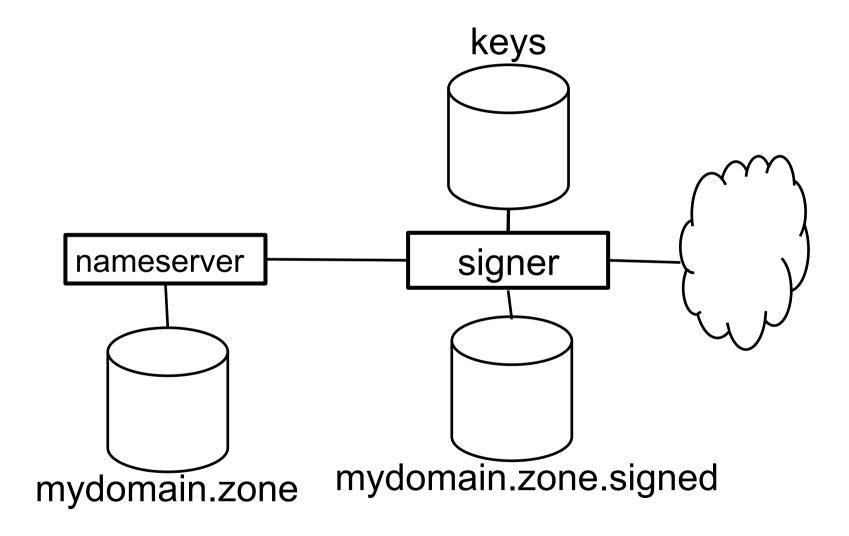
DNSSEC Implementation Considerations and Risk Analysis

ICANN Meeting
Singapore
18 March 2014
richard.lamb@icann.org

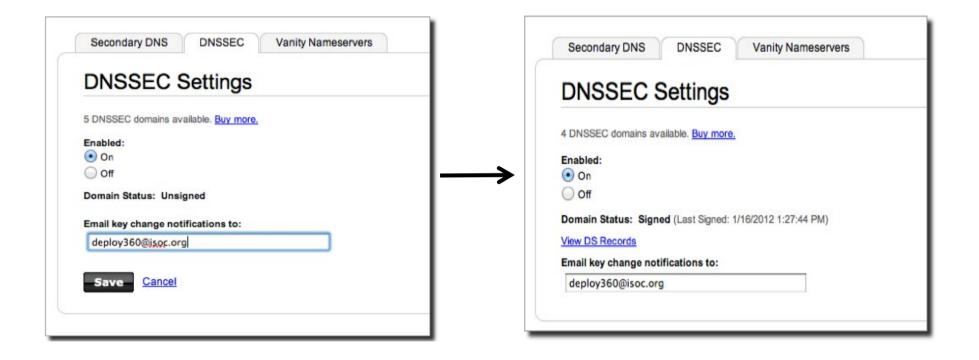
DNSSEC: We have passed the point of

Design Considerations

How do I sign a zone?


That's it

dnssec-signzone mydomain.zone mydomain.zone.signed


www.abc.com. IN A 192.101.186.125

www.abc.com. IN A 192.101.186.125
IN RRSIG A 8 3 3600
20130926030000 20130909030000 32799
www.abc.com.
N7upFHNplnIiXAEMOTefeuJrwymNxF 8D6/
poAoRVDThHVOnXniaIj2WuGVbCGvUMjayDhVNk9vAQ
tVHUIAnxZXsIlP4ZbtIgtZ/
hbTKByySx1Y0u9aRD1ik=

One way to do this

or...another

http://www.internetsociety.org/deploy360/resources/how-to-sign-your-domain-with-dnssec-using-godaddy-com/

It's a question of risk / trust, but is does not have to be expensive

Goals

- Reliable
- Trusted
- Cost Effective (for you)

Cost Effectiveness

Cost Effectiveness

- Risk Assessment
- Cost Benefit Analysis

Business Benefits and Motivation

(from "The Costs of DNSSEC Deployment" ENISA report)

- Become a reliable source of trust and boost market share and/or reputation of zones;
- Lead by example and stimulate parties further down in the chain to adopt DNSSEC;
- Earn recognition in the DNS community and share knowledge with TLD's and others;
- Provide assurance to end-user that domain name services are reliable and trustworthy;
- Look forward to increasing adoption rate when revenue is an important driver. Deploying DNSSEC can be profitable;

Risk Assessment

- Identify your risks
 - Reputational
 - Competition
 - Loss of contract
 - Legal / Financial
 - Who is the relying party?
 - -SLA
 - Law suits
- Build your risk profile
 - Determine your acceptable level of risk

Vulnerabilities

- False expectations
- Key compromise
- Signer compromise
- Zone file compromise

Cost Benefit Analysis

Setting reasonable expectations means it doesn't have to be expensive

From ENISA Report

- "....organizations considering implementing DNSSEC can greatly benefit from the work performed by the pioneers and early adopters."
- Few above 266240 Euros: Big Spenders: DNSSEC as an excuse to upgrade all infrastructure; embrace increased responsibility and trust through better governance.
- Most below 36059 Euros: Big Savers: reuse existing infrastructure. Do minimum.

Anticipated Capital and Operating Expense

- Being a trust anchor requires mature business processes, especially in key management;
- Investment cost also depends on strategic positioning towards DNSSEC: leaders pay the bill, followers can limit their investment;
- Financial cost might not outweigh the financial benefits. Prepare to write off the financial investment over 3 to 5 years, needed to gear up end-user equipment with DNSSEC.

Other Cost Analysis

- People
 - Swedebank half a FTE
 - Occasional shared duties for others
- Facilities
 - Datacenter space
 - Safe ~ \$100 \$14000
- Crypto Equip ~ \$5-\$40000
- Bandwidth ~ 4 x

http://www.internetdagarna.se/arkiv/2008/www.internetdagarna.se/images/stories/doc/

22 Kjell Rydger DNSSEC from a bank perspective 2008-10-20.pdf

Trusted

Trust

- Transparent
- Secure

Transparency

Transparency

- The power of truth
 - Transparency floats all boats here
- Say what you do
- Do what you say
- Prove it

Say what you do

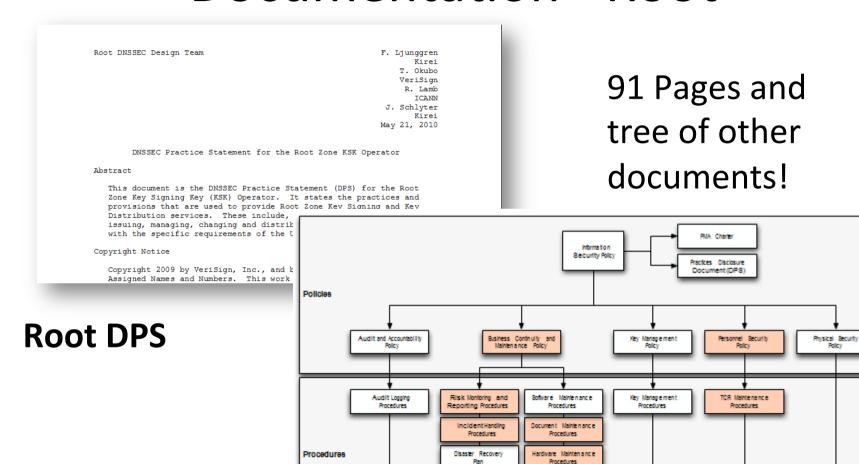
- Setting expectations
- Document what you do and how you do it
- Maintain up to date documentation
- Define Organization Roles and responsibilities
- Describe Services, facilities, system, processes, parameters

Learn from CA successes (and mistakes)

- The good:
 - The people
 - The mindset
 - The practices
 - The legal framework
 - The audit against international accounting and technical standards

Creating Trust Online®

- The bad:
 - Diluted trust with a race to the bottom (>1400 CA's)
 - DigiNotar
 - Weak and inconsistent polices and controls
 - Lack of compromise notification (non-transparent)
 - Audits don't solve everything (ETSI audit)


Say What You Do - Learn from Existing Trust Services

- Borrow many practices from SSL Certification Authorities (CA)
 - Published Certificate Practices Statements (CPS)
 - VeriSign, GoDaddy, etc...
 - Documented Policy and Practices (e.g., key management ceremony, audit materials, emergency procedures, contingency planning, lost facilities, etc...)

Say What You Do - DNSSEC Practices Statement

- DNSSEC Policy/Practices Statement (DPS)
 - Drawn from SSL CA CPS
 - Provides a level of assurance and transparency to the stakeholders relying on the security of the operations.
 - Regular re-assessment
 - Management signoff
 - Formalize Policy Management Authority (PMA)

Documentation - Root

Audit Burdle

Checklist

inatru cti o n

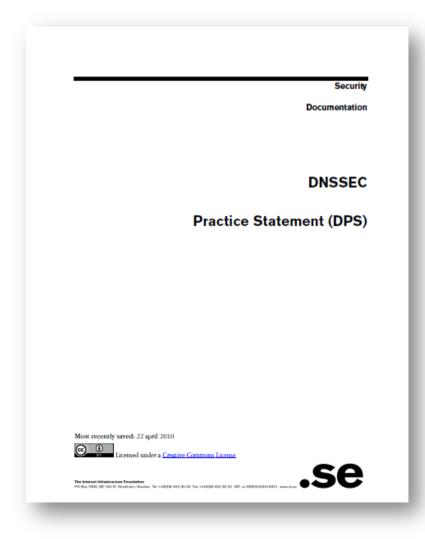
Termination Blan

K8K Roll-OverPlan

incident Reporting

Templa te

Key Ceremony


Scripts.

Security Awareness

Provisioning of Physical

Access Control

Documentation - .SE

22 pages, Creative Commons License!

.SE DPS

Do what you say

- Follow documented procedures / checklists
- Maintain logs, records and reports of each action, including incidents.
- Critical operations at Key Ceremonies
 - Video
 - Logged
 - Witnessed

Key Ceremony

A filmed and audited process carefully scripted for maximum transparency at which cryptographic key material is generated or used.

Prove it

- Audits
 - -3rd party auditor \$\$

- -ISO 27000 \$\$ etc..
- -Internal

Prove it - Audit Material

- Key Ceremony Scripts
- Access Control System logs
- Facility, Room, Safe logs
- Video
- Annual Inventory
- Logs from other Compensating Controls
- Incident Reports

Prove it

- Stakeholder Involvement
 - Publish updated material and reports
 - –Participation, e.g. External Witnesses from
 - —local Internet community
 - -Government
 - Listen to Feedback

Prove it

- Be Responsible
 - -Executive Level Involvement
 - In policies via Policy Management Authority
 - Key Ceremony participation

Security

Building in security

 Getting the machinery for DNSSEC is easy (BIND, NSD/Unbound, OpenDNSSEC, etc..).

Finding good security practices to run it is not.

Security

- Physical
- Logical
- Crypto

Physical

- Environmental
- Tiers
- Access Control
- Intrusion Detection
- Disaster Recovery

Physical - Environmental

- Based on your risk profile
- Suitable
 - Power
 - Air Conditioning
- Protection from
 - Flooding
 - Fire
 - Earthquake

Physical - Tiers

- Each tier should be successively harder to penetrate than the last
 - Facility
 - Cage/Room
 - Rack
 - Safe
 - System
- Think of concentric boxes

Physical - Tier Construction

- Base on your risk profile and regulations
- Facility design and physical security on
 - Other experience
 - DCID 6/9
 - NIST 800-53 and related documents
 - Safe / container standards

Physical – Safe Tier



Physical – Safe Tier

Physical – Tamper Evident Packaging

Physical - Access Control

- Base on your risk profile
- Access Control System
 - Logs of entry/exit
 - Dual occupancy / Anti-passback
 - Allow Emergency Access
- High Security: Control physical access to system independent of physical access controls for the facility

Physical - Intrusion Detection

- Intrusion Detection System
 - Sensors
 - Motion
 - Camera
- Tamper Evident Safes and Packaging
- Tamper Proof Equipment

Physical - Disaster Recovery

- Multiple sites
 - Mirror
 - Backup
- Geographical and Vendor diversity

Logical

- Authentication (passwords, PINs)
- Multi-Party controls

Logical - Authentication

- Procedural:
 - REAL passwords
 - Forced regular updates
 - Out-of-band checks
- Hardware:
 - Two-factor authentication
 - Smart cards (cryptographic)

Logical - Multi-Party Control

- Split Control / Separation of Duties
 - E.g., Security Officer and System Admin and Safe
 Controller
- M-of-N
 - Built in equipment (e.g. HSM)
 - Procedural: Split PIN
 - Bolt-On: Split key (Shamir, e.g. ssss.c)

Crypto

- Algorithms / Key Length
- Crypto Hardware

Crypto - Algorithms / Key Length

- Factors in selection
 - Cryptanalysis
 - Regulations
 - Network limitations

Crypto - Key Length

• Cryptanalysis from NIST: 2048 bit RSA SHA256

Recommended Minimum Cryptographic Strength for DNSSEC			
Year	Min. Bit Strength	Algorithm Suites	Key Sizes
Now->2010	80	DSA/SHA-1 RSA/SHA-1	Both: 1024 bits
2010->2029	112	DSA/SHA-256 RSA/SHA-256	Both: 2048 bits
2030 and Beyond	128	DSA/SHA-256 RSA/SHA-256	Both: 3072 bits

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_PART3_key-management_Dec2009.pdf

Crypto - Algorithms

- Local regulations may determine algorithm
 - GOST
 - DSA
- Network limitations
 - Fragmentation means shorter key length is better
 - ZSK may be shorter since it gets rolled often
 - Elliptical is ideal but not commonplace

Crypto - Algorithms

- NSEC3 if required
 - Protects against zone walking
 - Avoid if not needed adds overhead for small zones
 - Non-disclosure agreement?
 - Regulatory requirement?
 - Useful if zone is large, not trivially guessable (only "www" and "mail") or structured (ip6.arpa), and not expected to have many signed delegations ("opt-out" avoids recalculation).

Crypto - Hardware

- Satisfy your stakeholders
 - Doesn't need to be certified to be secure (e.g., off-line PC)
 - Can use transparent process and procedures to instill trust
 - But most Registries use or plan to use HSM. Maybe CYA?
- AT LEAST USE A GOOD Random Number Generator (RNG)!
- Use common standards avoid vendor lock-in.
 - Note: KSK rollover may be ~10 years.
- Remember you must have a way to backup keys!

Crypto - Hardware Security Module (HSM)

- FIPS 140-2 Level 3
 - Sun SCA6000 (~30000 RSA 1024/sec) ~\$10000 (was \$1000!!)
 - Thales/Ncipher nshield (~500 RSA 1024/sec) ~\$15000
 - Ultimaco
- FIPS 140-2 Level 4
 - AEP Keyper (~1200 RSA 1024/sec) ~\$15000
 - IBM 4765 (~1000 RSA 1024/sec) ~\$9000
- Recognized by your national certification authority
 - Kryptus (Brazil) ~ \$2500

Study:

http://www.opendnssec.org/wp-content/uploads/2011/01/A-Review-of-Hardware-Security-Modules-Fall-2010.pdf

Crypto - PKCS11

- A common interface for HSM and smartcards
 - C_Sign()
 - C_GeneratePair()
- Avoids vendor lock-in somewhat
- Vendor Supplied Drivers (mostly Linux, Windows) and some open source

Crypto - Smartcards / Tokens

- Smartcards (PKI) (card reader ~\$12)
 - AthenaSC IDProtect ~\$30
 - Feitian ~\$5-10
 - Aventra ~\$11
- TPM
 - Built into many PCs
- Token
 - Aladdin/SafeNet USB e-Token ~\$50
- Open source PKCS11 Drivers available
 - OpenSC
- Has RNG
- Slow ~0.5-10 1024 RSA signatures per second

Crypto -Random Number Generator

- X rand()
- X Netscape: Date+PIDs
- ✓ LavaRand

- int getRandomNumber()
 {
 return 4; // chosen by fair dice roll.
 // guaranteed to be random.
 }
- ? System Entropy into /dev/random (FBSD=c +entropy/Linux=entropy?)
- √ H/W, Quantum Mechanical (laser) \$
- ✓ Standards based (FIPS, NIST 800-90 DRBG)
- ✓ Built into CPU chips

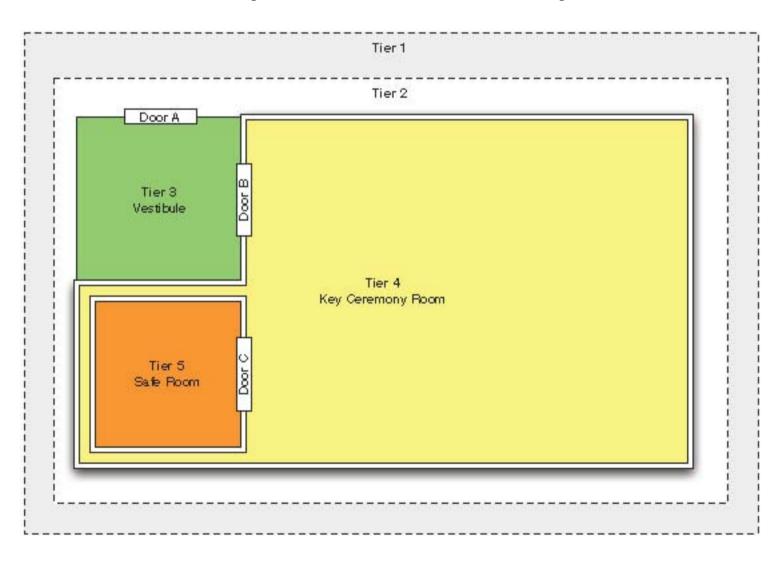
Crypto - FIPS 140-2 Level 4 HSM

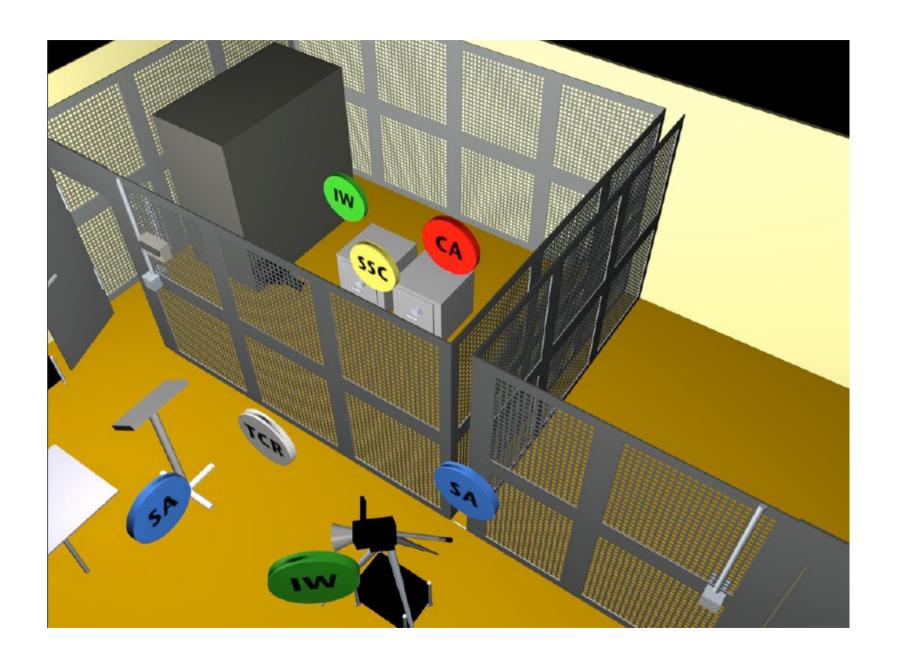
Root, .FR, .CA ...

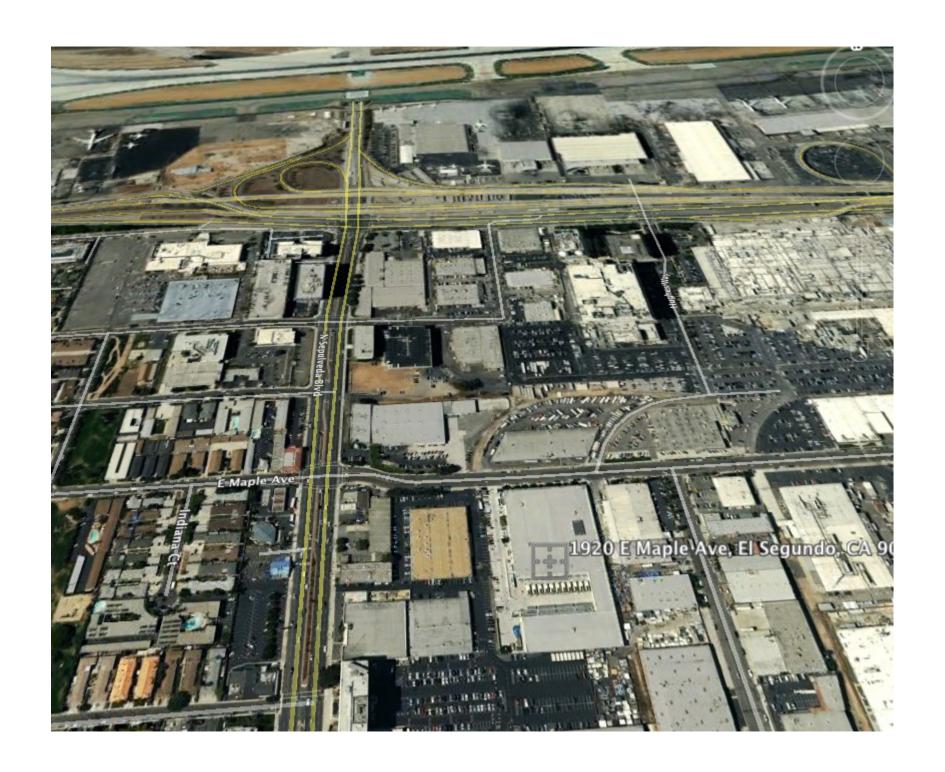
Crypto – FIPS Level 3 HSM

- But FIPS 140-2 Level 3 is also common
- Many TLDs using Level 3 .com , .se, .uk, .com, etc... \$10K-\$40K

An implementation can be thi\$






Physical Security

http://www.flickr.com/photos/kjd/sets/72157624302045698/

...or this

Algorithms are used: Triple-DES (Cert. #560); Triple-DES MAC (Triple-DES Cert. #560, vendor affirmed); AES (Cert. #577); SHS (Cert. #633); RNG (Cert. #332); RSA (Cert. #264)

The cryptographic income also comains the following non-FIPS approved algorithms:

RSA (key wrapping; key establishment methodology provides between 80 and 112 bits of encryption strength)

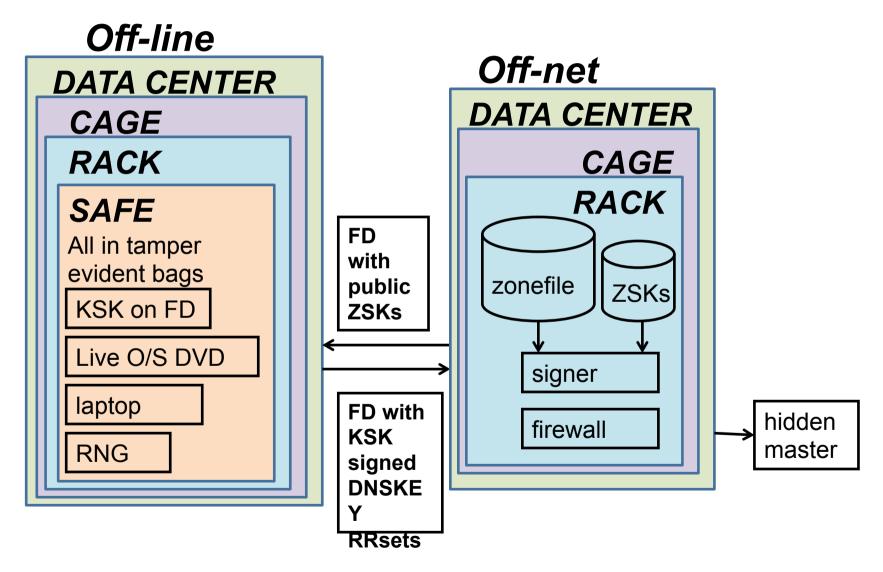
Overall Level Achieved: 3

Signed on behalf of the Government of the United States

Signature: Milliam Rasker

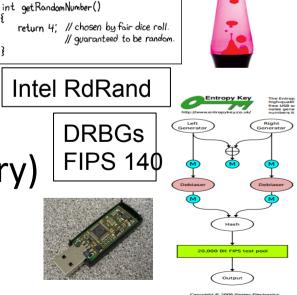
Dated: March 31, 2008
Chief, Computer Security Division

Chief, Computer Security Division National Institute of Standards and Technology Signed on behalf of the Government of Canada


Signature: Dated: 2008

Director, Industry Program Group Communications Security Establishment

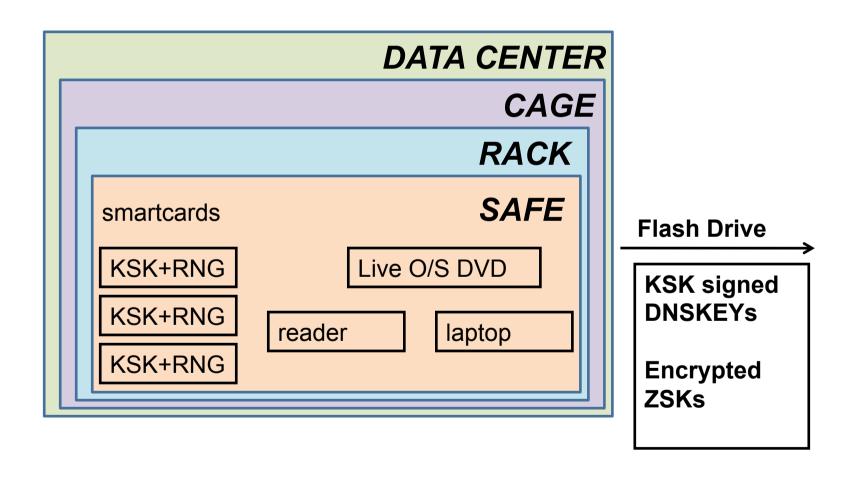
..or this (from .cr) EPP BIND&DNS Público -> ISC Anyces ns.cr (UCR) **Transport KSK** Privado > unsigned signed Sign ZSKs **DNSKEY** Sign zones zone with KSK **RRsets** with ZSK RIPE Anycast **Offline Laptop** Online/off net signed with TPM DNSSEC zone Signer with TPM¹ CHILE Fred KSK **Transport ZSKs** Generate public half of MX KSK ZSKs Generate ZSKs Secure Off-Verify Relead+Notify ns.cr (NIC) line secundario.nic.c MASTER Signed **Environment** Zone Registro de dominios bajo Animated slide


...or even this

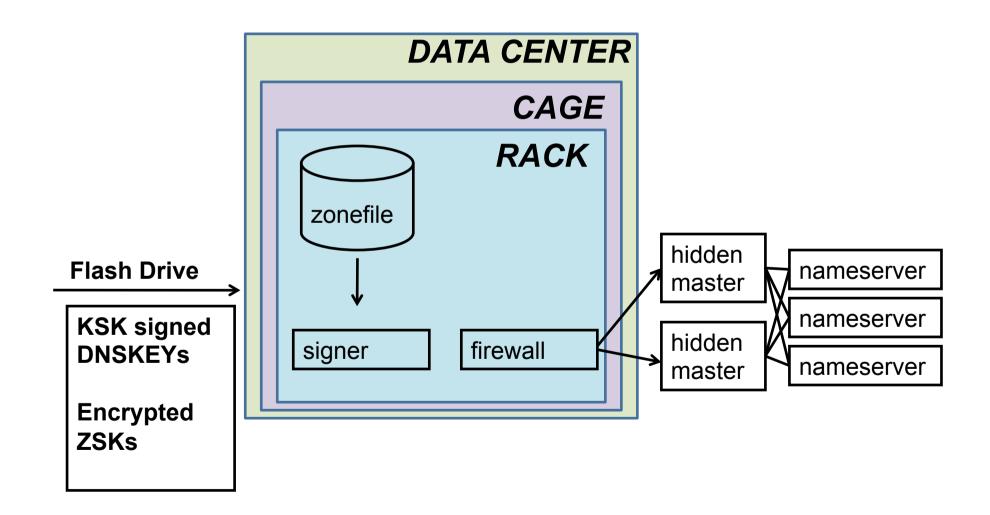
But all must have:

- Published practice statement
 - Overview of operations
 - Setting expectations
 - Normal
 - Emergency
 - Limiting liability
- Documented procedures
- Multi person access requirements
- Audit logs
- Monitoring (e.g., for signature expiry)
- Good Random Number Generators

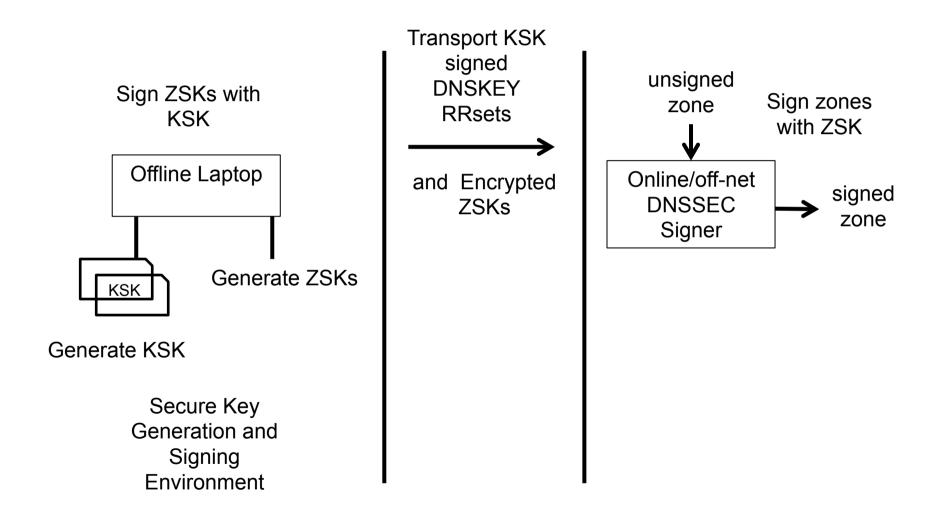
Useful IETF RFCs:

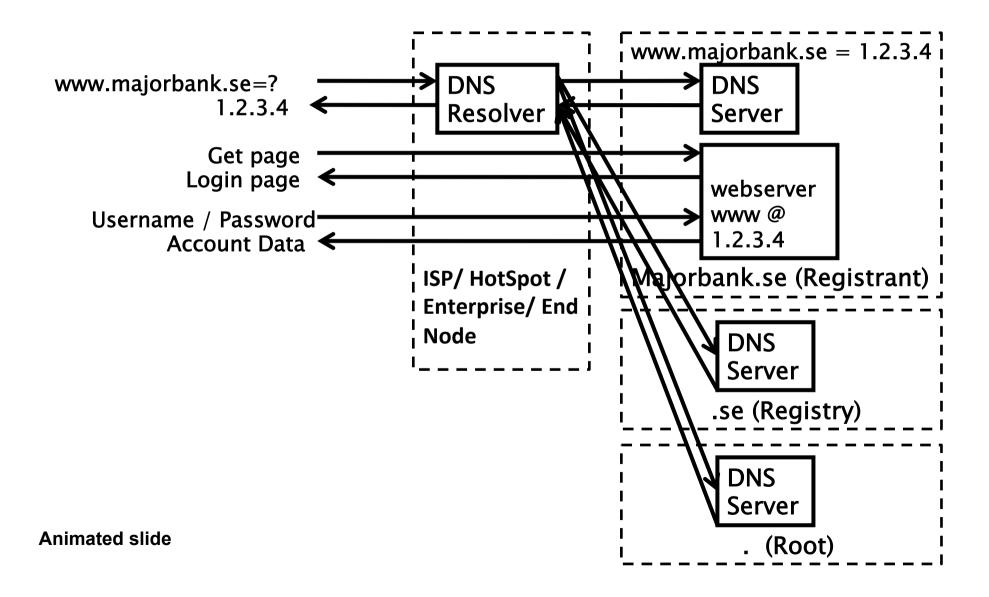

DNSSEC Operational Practices http://tools.ietf.org/html/draft-ietf-dnsop-rfc4641bis

A Framework for DNSSEC Policies and DNSSEC Practice Statements http://tools.ietf.org/html/draft-ietf-dnsop-dnssec-


Demo Implementation

- Key lengths KSK:2048 RSA ZSK:1024 RSA
- Rollover KSK:as needed ZSK:90 days
- RSASHA256 NSEC3
- Physical HSM/smartcards inside Safe inside Rack inside Cage inside Commercial Data Center
- Logical Separation of roles: cage access, safe combination,
 HSM/smartcard activation across three roles
- Crypto use FIPS certified smartcards as HSM and RNG
 - Generate KSK and ZSK offline using RNG
 - KSK use off-line
 - ZSK use off-net


Off-Line Key generator and KSK Signer

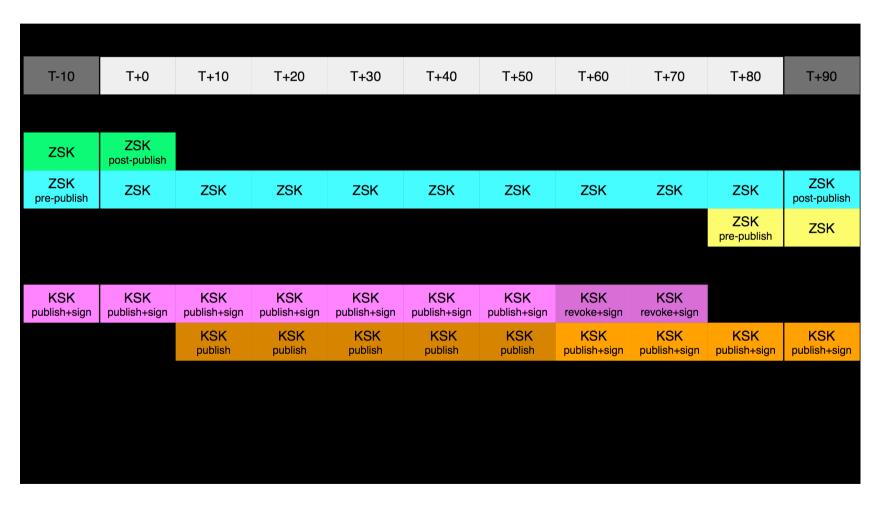

Off-Net Signer

Key Management

DNS+DNSSEC

Simple Key Management Scripts

Keeping things signed


- If the signatures are going to expire soon, sign the zone
- Define "soon"
- Also sign if a record has changed
- That's it!

```
while(1) {
  t = time
  if(exp - t) < 5 days {
     inc = t
     exp = t + 10 days
     touch infile
  if new infile {
    cat infile keys > zonefile
    increment zonefile SOA serial
    signzone -s inc -e exp zonefile
                       zsk-current ksk
    rndc reload
  sleep 1 second
```

Rolling keys

- Mind the cache DNS resolvers have memory
- Publish the new ZSK before signing with it
 - Put the new ZSK in the DNSKEY RRset along with old ZSK and wait until everyone see its
- Sign the zone with the new ZSK until you want to change it
- But do not un-Publish the old ZSK until no one may need it

Key Rollover Schedule - Root

https://www.iana.org/dnssec

generate zsk-new cat zsk-new zsk-current ksk > keys touch infile sleep >2xTTL copy zsk-new zsk-current touch infile sleep >2xTTL cat zsk-current ksk > keys touch infile sleep >2xTTL