Campus Network Design Science DMZ

Dale Smith Network Startup Resource Center dsmith@nsrc.org

The information in this document comes largely from work done by ESnet, the USA Energy Sciences Network – see http://fasterdata.es.net. This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the ESnet as the original source.

Making Networks Faster

- Lots of work has been done to try to understand how to make transfers of large data files go faster.
- ESnet, the USA Energy Sciences Network has done a lot of work on this issue
 - See http://fasterdata.es.net
- This talk will summarize some of those concepts

Science Needs Lots of Data

- Many science disciplines need large data sets for analysis
- Moving these large data sets over long distances is challenging

Moving 1 Terabyte File

- 10 Mbps network: 300 hrs (12.5 days)
- 100 Mbps network: 30 hrs
- 1 Gbps network: 3 hrs
 - are your disks fast enough?
- 10 Gbps network: 20 minutes
 - need really fast disks and filesystems
- Compare these speeds to:
 - USB 2.0 portable disk: 20-30 hours

Science Use Case

- Alice & Bob are science collaborators
 - Experts in their field
 - Physically separated, on separate continents
 - Rely on networks, but are not IT experts
- Alice & Bob start a new project
 - Instrument @ one end generating large data sets
 - processing/analysis @ the other
 - How well is this going to work?

Use Case: Networks Look OK

- Pinging between Alice and Bob's systems show 1 packet lost in every 20,000 sent
- IT/Networking look at Internet use graphs and sees low usage (no congestion)
- However, data transfers are 1/10th what they expected and are taking 10 times longer than was predicted
- What has happened?

A small amount of packet loss makes a huge difference in TCP performance

Which leads us to the Science DMZ

- Causes of poor data transfer performance
 - Packet loss issues (even small amounts)
 - Un-tuned/under-powered hosts
- The Science DMZ is a design pattern to optimize for network performance
 - Not all implementations look the same, but share common features
 - Some choices don't make sense for everyone (Know Your Network)

Traditional Network DMZ

- DMZ "Demilitarized Zone"
 - Typically a network segment off of the border firewall that houses servers
 - This network segment is near the site perimeter and has a different security policy than the rest of the network
 - Commonly used architectural element for deploying WAN-facing services (e.g. email, DNS, web)

Traditional Network DMZ

- Traffic on the DMZ does not traverse the campus LAN
 - WAN flows are isolated from LAN traffic
 - Infrastructure for WAN services is specifically configured for WAN
- Separation of security policy improves both LAN and WAN
- Do the same thing for science Science DMZ

The Science DMZ in 2 Slides

- Consists of three key components:
 - 1. "Friction free" network path
 - Goal is no packet loss
 - Highly capable network devices (wire-speed, deep queues)
 - Security policy and enforcement specific to science workflows
 - Located at or near site perimeter if possible
 - Virtual circuit connectivity option

The Science DMZ in 2 Slides

- 2. Dedicated, high-performance Data Transfer Nodes (DTNs)
 - Hardware, operating system, libraries all optimized for transferring data quickly
 - Includes optimized data transfer tools such as Globus or GridFTP
- 3. Performance measurement/test node
 - perfSONAR

Details at http://fasterdata.es.net/science-dmz/

TCP — Ubiquitous and Fragile

- Virtually all communications between systems on the Internet is via TCP
- TCP the fragile workhorse
 - TCP is (for very good reasons) timid packet loss is interpreted as congestion
 - Packet loss in conjunction with latency is a performance killer
 - Like it or not, TCP is used for the vast majority of data transfers (including science data)

How do you make TCP go fast?

- High-performance wide area TCP flows must get loss-free service
 - Sufficient bandwidth to avoid congestion
 - No packet loss in network devices you can control
 - This is "Friction Free Networking"

1. Friction Free Network Path

- Goal is to Totally Eliminate Packet Loss
- Common sources
 - security devices (firewalls, NAT boxes, Intrusion Prevention System/IPS)
 - Routers or switches without enough buffering
 - Micro flows from a capable server can over run the buffers in some devices
 - This problem becomes more common as data rates increase and the capabilities of the hosts increase

Router and Switch Output Queues

- Interface output queue allows the router or switch to avoid causing packet loss in cases of momentary congestion
- In network devices, queue depth (or 'buffer') is often a function of cost
 - Cheap, fixed-config LAN switches have inadequate buffering
- Expensive, chassis-based devices are more likely to have deep enough queues

Equipment – Routers and Switches

- Requirements for Science DMZ gear are different than for campus LAN
 - No need to go for the long list of features
 - Support for the latest LAN integration magic with your Windows Active Directory environment is probably not super-important
 - A clean architecture is important
 - How fast can a single flow go?
 - Are there any components that go slower than interface wire speed?

Please tell me – what should I buy?

- We get this question a lot
 - Hard to answer what is right for you
- We don't recommend one vendor over another
- We have no idea what's right for your environment
 - Our goal is to describe our understanding of what works and why

Some Stuff We Think Is Important

- Deep interface queues
 - Output queue or VOQ doesn't matter
 - What TCP sees is what matters
 - No, this isn't buffer bloat
- Good counters
 - We like the ability to reliably count *every* packet associated with a particular flow, address pair, etc
 - Very helpful for debugging packet loss
 - Must not affect performance (just count it, don't punt it)
 - sflow support if possible
 - If the box is going to drop a packet, it should increment a counter somewhere indicating that it dropped the packet
 - Magic vendor permissions and hidden commands should not be necessary
 - Some boxes just lie run away!
- Single-flow performance should be wire-speed

You are not alone

- Lots of community resources
 - Ask folks who have already done it
 - Ask the Science DMZ mailing list: <u>sciencedmz@es.net</u>
- Vendors can be very helpful just ask the right questions
 - Request an eval box (or preferably two)
 - Ask for config examples to implement a particular feature
 - E.g. "Please give me the QoS config for the following:"
 - 1 queue for network control (highest priority) 5% of interface buffer memory
 - 1 queue configured for tail-drop (lower priority) 95% of interface buffer memory
 - With that config, how many milliseconds of buffer are in the tail-drop queue when measured at interface wire speed?

2. Dedicated Data Transfer Node

- As your network speeds increase, it becomes more and more critical to have hosts specifically designed to move data
 - Special hardware
 - Disk systems
 - Motherboards, processors, etc
 - Properly tuned operating system to be able to transfer data over long distances (with high latency)

DTN Hardware Considerations

- Motherboard and Chassis
 - 40Gbs requires PCI Express Gen3
 - Intel Sandy/Ivy Bridge for example
- Pay attention to PCI bus, not all the same
 - Some faster and wired with more "lanes" than others
- DTN should have lots of memory
 - 32Gb should be considered a minimum

DTN Disk Storage Considerations

- Whether local storage or Storage System doesn't matter. Only speed does.
- Disk speed is a changing game and anything we write here is out of date soon
- SSD storage is generally faster than rotating disks
- Raid controllers can help things go faster
 - Must do raid to go faster than 1Gbs

DTN Network Interfaces

- Almost any 1G network interface is fine
- When you get to 10G (and above) network interfaces, you need special hardware
 - Cheap is not always good
 - Look for
 - Interrupt coalescing
 - Support for MSI-X
 - Support for TCP offload engine
 - Support for zero-copy protocols such as RDMA

DTN Tuning

- Defaults aren't right for any operating system
- What needs to be tuned:
 - BIOS
 - Firmware
 - Device Drivers
 - Networking
 - File System
 - Application
- Can often double performance with tuning

And use the right transfer tool

 Sample Results: Berkeley, CA to Argonne, IL (near Chicago), RTT = 53 ms, network capacity = 10Gbps.

Tool	Throughput
scp	140Mbs
HPN patched scp	1.2Gbs
ftp	1.4Gbs
GridFTP (4 streams)	6.6Gbs

3. Performance/Measurement

- What is recommended for Science DMZ is to use perfSONAR
- Where should you put perfSONAR nodes?
 - Obviously, where the DTN is
 - But, what about other places?
 - Need perfSONAR in campus and in NREN
 - Being able to test to multiple locations and getting data from multiple places in your network is quite useful

perfSONAR Placement - Campus

perfSONAR Placement - Campus

- NREN designs vary widely
- NREN should consider placing a perfSONAR node in every place that the NREN has a backbone or customer aggregation router

But what about Security?

- Just because there is no firewall doesn't mean you can't do security
 - Firewalls have security policies that say "allow this", "deny that"
 - That looks a lot like an access control list (ACL) on a router
 - You can duplicate most firewall policies using ACLs on routers
- You can do security without firewalls!

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Symbols to use for diagrams

