

KVM and libvirt

NSRC

Virtualisation Recap

NSRC

What's in a PC?

CPU + RAM

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

BIOS

Terminology

● Virtualization: dividing available resources into
smaller independent units

● Emulation: using software to simulate hardware
which you do not have

● The two often come hand-in-hand
– e.g. we can virtualize a PC by using it to emulate a

collection of less-powerful PCs

Benefits

● Consolidation
– Most systems are under-utilized, especially the CPU

is idle for much of the time

– Do more work with less hardware

– Reduced space and power requirements

● Management
– Less hardware inventory to manage

– Concentrate your resilience efforts

– Increased isolation between services

– Abstract away (hide) differences in hardware

Benefits

● Flexibility
– Grow systems on demand (e.g. allocate more CPU

or RAM where it is needed)

– Create new services quickly without having to install
new hardware every time

– Dynamically create and destroy instances for testing
and development

● New capabilities
– Snapshot/restore, cloning, migration, …

– Run different OSes on the same machine at once

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem network
stack

user
process

user
process

user
process

KernelKernel

Points to note

● The device drivers in the OS interact with the
hardware

● User processes are forbidden by the OS from
interacting directly with the hardware
– the OS configures protection mechanisms to

enforce this

What we need

● To emulate a PC we must emulate all the
components of the PC
– hard disk interface, network card

– graphics card, keyboard, mouse

– clock, memory management unit etc

● We want multiple instances to co-exist and not
be able to interfere with each other
– access to memory must also be controlled

● The software to do this is called a hypervisor

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

HYPERVISOR

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem network
stack

user
process

user
process

user
process

KernelKernel

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem network
stack

user
process

user
process

user
process

KernelKernel

emulated
hardware

Virtual machine 1 Virtual machine 2

Virtual Machines

● Each emulated PC is a "virtual machine"
● Hypervisor allocates some real system RAM to

each VM, and shares the CPU time
● Hypervisor emulates other hardware, e.g. disk

and network interfaces
● Within each VM you can boot an operating

system
● Full hardware virtualization means different

VMs can be running different OSes

Virtualization terminology

● The host is the machine running the emulation
● The guest is the emulated (virtual) machine
● One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS

The Hypervisor

● Note that the Hypervisor itself is a component
of an operating system *
– It needs device drivers, a filesystem, a network

stack for remote management, etc

● So there is a host OS for the hypervisor, plus
guest OSes

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating
system

Summary

● Virtualization can make better use of your
hardware by emulating more machines than
you really have

● The emulated environment is provided by a
hypervisor

● The hypervisor (host) lets you start up virtual
machines (guests) each with its own operating
system and emulated devices

● Guest hardware emulated using resources on
the host

KVM and libvirt

NSRC

Server virtualization

● Scenario: running VMs remotely on a server in
a data centre

● We are more interested in:
– Reliability

– Performance / low overhead

– Ability to grow to large clusters (without being tied
into huge license fees!)

– Remote management, scripted management

– Features like machine migration

Choosing a hypervisor

● There are many hypervisor options out there
● Market has forced them all to be "free" - at least

to begin with
● Commercial products: you pay later (heavily!)

when you need to run clusters of machines

Our choice: KVM

● KVM = Kernel Virtual Machine
● A hypervisor built into the Linux Kernel, based

on QEMU
● It's where it's all happening!

– Many, many projects using KVM

– KVM gets all the development attention

● It requires VT-x or AMD-V to run
● The host must be Linux

– but not necessarily the guests, of course

KVM is very simple

● Each VM is just a userland process
● Can run it directly from the command line

– kvm -cdrom /path/to/image.iso

● starts a VM, ISO image attached

● Painful to track all the command line options for
RAM, disk drives, network interfaces, etc etc

● So you need something to remember all your
VMs and how to start them

libvirt

● Red Hat's framework for managing hypervisors

KVM Xen VBox LXC ...etc

libvirt

virsh
virt-

manager

XML

command line console GUI

libvirt

● API to create, modify, and control VMs
– Terminology: VM is called "guest domain"

● Each VM has an XML file with all settings
– Easy to read, backup and duplicate

– Relatively easy to modify

● Two front-ends
– virsh: command-line

– virt-manager: X11 GUI

● Various other projects interface with libvirt API

libvirt limitations

● No simple web interface included
● virt-manager can talk to remote hypervisors, but

virt-manager itself only runs under Linux
– so you may end up running a VNC desktop into the

Linux box, just to run virt-manager there

● XML format is unique to libvirt
– different to OVF, VMX etc

– too hard to write from scratch!

● libvirt's storage management is difficult

virsh commands (1)

● virsh list [--all]

– list running (or all) VMs
● virsh start VM

– start the VM named VM
● virsh shutdown VM

– shutdown VM (properly)
● virsh destroy VM

– kill a VM (power off)

● virsh console VM

– connect to the serial
console of a VM

● virsh define FILE

– create VM definition from
this XML file

● virsh undefine VM

– erase the machine
definition (danger!)

Easily scriptable - e.g. easy to write a shell loop to start or stop a bunch of VMs

virsh commands (2)

● virsh dumpxml VM

– show the XML

● virsh edit VM

– open XML in editor

<domain type=’kvm’>
 <name>noc.ws.nsrc.org</name>
 <uuid>4641a945-abab-1c0b-0fb0-2db681c28130</uuid>
 <memory>1048576</memory>
 <currentMemory>1048576</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch=’x86_64’ machine=’pc-1.0’>hvm</type>
 <boot dev=’hd’/>
 </os>
...

virt-manager - main view

virt-manager - console view

NOTE: Press Left-CTRL and Left-ALT together to release the keyboard and mouse

virt-manager - VM details/settings

Summary

● KVM is a free, open-source hypervisor for Linux
● All major Linux distros support KVM
● libvirt is a simple admin interface

– starts and stops the hypervisor

– stores hypervisor settings in XML file

– virsh: command line

– virt-manager: GUI comparable to VirtualBox (albeit
not as polished)

VMBuilder

● VMBuilder is a Python based software package
for creating virtual machine images of Linux.

● Maintained by Ubuntu
● Supports building Xen, VirtualBox, VMware,

KVM and Amazon EC2 images.
● Can be configured with default options for new

images in /etc/vmbuilder.cfg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

