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Terminology

● Virtualization: dividing available resources into 
smaller independent units

● Emulation: using software to simulate hardware 
which you do not have

● The two often come hand-in-hand
– e.g. we can virtualize a PC by using it to emulate a 

collection of less-powerful PCs



  

Benefits

● Consolidation
– Most systems are under-utilized, especially the CPU 

is idle for much of the time

– Do more work with less hardware

– Reduced space and power requirements

● Management
– Less hardware inventory to manage

– Concentrate your resilience efforts

– Increased isolation between services

– Abstract away (hide) differences in hardware



  

Benefits

● Flexibility
– Grow systems on demand (e.g. allocate more CPU 

or RAM where it is needed)

– Create new services quickly without having to install 
new hardware every time

– Dynamically create and destroy instances for testing 
and development

● New capabilities
– Snapshot/restore, cloning, migration, …

– Run different OSes on the same machine at once
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Points to note

● The device drivers in the OS interact with the 
hardware

● User processes are forbidden by the OS from 
interacting directly with the hardware
– the OS configures protection mechanisms to 

enforce this



  

What we need

● To emulate a PC we must emulate all the 
components of the PC
– hard disk interface, network card

– graphics card, keyboard, mouse

– clock, memory management unit etc

● We want multiple instances to co-exist and not 
be able to interfere with each other
– access to memory must also be controlled

● The software to do this is called a hypervisor
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Virtual Machines

● Each emulated PC is a "virtual machine"
● Hypervisor allocates some real system RAM to 

each VM, and shares the CPU time
● Hypervisor emulates other hardware, e.g. disk 

and network interfaces
● Within each VM you can boot an operating 

system
● Full hardware virtualization means different 

VMs can be running different OSes



  

Virtualization terminology

● The host is the machine running the emulation
● The guest is the emulated (virtual) machine
● One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS



  

The Hypervisor

● Note that the Hypervisor itself is a component 
of an operating system *
– It needs device drivers, a filesystem, a network 

stack for remote management, etc

● So there is a host OS for the hypervisor, plus 
guest OSes

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating 
system



  

Summary

● Virtualization can make better use of your 
hardware by emulating more machines than 
you really have

● The emulated environment is provided by a 
hypervisor

● The hypervisor (host) lets you start up virtual 
machines (guests) each with its own operating 
system and emulated devices

● Guest hardware emulated using resources on 
the host
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Server virtualization

● Scenario: running VMs remotely on a server in 
a data centre

● We are more interested in:
– Reliability

– Performance / low overhead

– Ability to grow to large clusters (without being tied 
into huge license fees!)

– Remote management, scripted management

– Features like machine migration



  

Choosing a hypervisor

● There are many hypervisor options out there
● Market has forced them all to be "free" - at least 

to begin with
● Commercial products: you pay later (heavily!) 

when you need to run clusters of machines



  

Our choice: KVM

● KVM = Kernel Virtual Machine
● A hypervisor built into the Linux Kernel, based 

on QEMU
● It's where it's all happening!

– Many, many projects using KVM

– KVM gets all the development attention

● It requires VT-x or AMD-V to run
● The host must be Linux

– but not necessarily the guests, of course



  

KVM is very simple

● Each VM is just a userland process
● Can run it directly from the command line

– kvm -cdrom /path/to/image.iso 

● starts a VM, ISO image attached

● Painful to track all the command line options for 
RAM, disk drives, network interfaces, etc etc

● So you need something to remember all your 
VMs and how to start them



  

libvirt

● Red Hat's framework for managing hypervisors

KVM Xen VBox LXC ...etc

libvirt

virsh
virt-

manager

XML

command line console GUI



  

libvirt

● API to create, modify, and control VMs
– Terminology: VM is called "guest domain"

● Each VM has an XML file with all settings
– Easy to read, backup and duplicate

– Relatively easy to modify

● Two front-ends
– virsh: command-line

– virt-manager: X11 GUI

● Various other projects interface with libvirt API



  

libvirt limitations

● No simple web interface included
● virt-manager can talk to remote hypervisors, but 

virt-manager itself only runs under Linux
– so you may end up running a VNC desktop into the 

Linux box, just to run virt-manager there

● XML format is unique to libvirt
– different to OVF, VMX etc

– too hard to write from scratch!

● libvirt's storage management is difficult



  

virsh commands (1)

● virsh list [--all]

– list running (or all) VMs
● virsh start VM

– start the VM named VM
● virsh shutdown VM

– shutdown VM (properly)
● virsh destroy VM

– kill a VM (power off)

● virsh console VM

– connect to the serial 
console of a VM

● virsh define FILE

– create VM definition from 
this XML file

● virsh undefine VM

– erase the machine 
definition (danger!)

Easily scriptable - e.g. easy to write a shell loop to start or stop a bunch of VMs



  

virsh commands (2)

● virsh dumpxml VM

– show the XML

● virsh edit VM

– open XML in editor

<domain type=’kvm’>
  <name>noc.ws.nsrc.org</name>
  <uuid>4641a945-abab-1c0b-0fb0-2db681c28130</uuid>
  <memory>1048576</memory>
  <currentMemory>1048576</currentMemory>
  <vcpu>1</vcpu>
  <os>
    <type arch=’x86_64’ machine=’pc-1.0’>hvm</type>
    <boot dev=’hd’/>
  </os>
... 



  

virt-manager - main view



  

virt-manager - console view

NOTE: Press Left-CTRL and Left-ALT together to release the keyboard and mouse



  

virt-manager - VM details/settings



  

Summary

● KVM is a free, open-source hypervisor for Linux
● All major Linux distros support KVM
● libvirt is a simple admin interface

– starts and stops the hypervisor

– stores hypervisor settings in XML file

– virsh: command line

– virt-manager: GUI comparable to VirtualBox (albeit 
not as polished)



  

VMBuilder

● VMBuilder is a Python based software package 
for creating virtual machine images of Linux.

● Maintained by Ubuntu
● Supports building Xen, VirtualBox, VMware, 

KVM and Amazon EC2 images.
● Can be configured with default options for new 

images in /etc/vmbuilder.cfg
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