
OpenVSwitch

Dean Pemberton – NSRC
Andy Linton – NSRC

Sam Russell – REANNZ

Why Open vSwitch…
Open vSwitch's forwarding path (the in-kernel
datapath) is designed to be amenable to
"offloading" packet processing to hardware
chipsets, whether housed in a classic hardware
switch chassis or in an end-host NIC.
This allows for the Open vSwitch control path to
be able to both control a pure software
implementation or a hardware switch.

…Why Open vSwitch
The advantage of hardware integration is
not only performance within virtualized
environments. If physical switches also
expose the Open vSwitch control
abstractions, both bare-metal and virtualized
hosting environments can be managed
using the same mechanism for automated
network control.

Components

ovsdb-server
•  Database that holds switch-level configuration

–  Bridge, interface, tunnel definitions
–  OVSDB and OpenFlow controller addresses

•  Configuration is stored on disk and survives a reboot
•  Custom database with nice properties:

–  Value constraints
–  Weak references
–  Garbage collection

•  Log-based (fantastic for debugging!)
•  Speaks OVSDB protocol to manager and ovs-vswitchd
•  The OVSDB protocol is in the process of becoming an

Informational RFC

Core Tables
“Open_vSwitch” is the root
table and there is always
only a single row. The tables
here are the ones most
commonly used; a full entity-
relationship diagram is
available in the ovs-
vswitchd.conf.db man page.

Debugging the Database
•  ovs-vsctl: Configures ovs-vswitchd, but really a high-level

interface for database
–  ovs-vsctl add-br <bridge>
–  ovs-vsctl list-br
–  ovs-vsctl add-port <bridge> <port> • ovs-vsctl list-ports <bridge>
–  ovs-vsctl get-manager <bridge>
–  ovs-vsctl get-controller <bridge>
–  ovs-vsctl list <table>

•  ovsdb-tool: Command-line tool for managing database
file
–  ovsdb-tool show-log [-mmm] <file>

Linux Bridge Design
•  Simple forwarding
•  Matches destination

MAC address and
forwards

•  Packet never
leaves kernel

Open vSwitch Design
•  Decision about how

to process packet
made in userspace

•  First packet of new
flow goes to ovs-
vswitchd, following
packets hit cached
entry in kernel

ovs-vswitchd
•  Core component in the system:

–  Communicates with outside world using OpenFlow
–  Communicates with ovsdb-server using OVSDB protocol
–  Communicates with kernel module over netlink
–  Communicates with the system through netdev abstract interface

•  Supports multiple independent datapaths (bridges)
•  Packet classifier supports efficient flow lookup with wildcards and

“explodes” these (possibly) wildcard rules for fast processing by the
datapath

•  Implements mirroring, bonding, and VLANs through modifications of
the same flow table exposed through OpenFlow

•  Checks datapath flow counters to handle flow expiration and stats
requests

•  Tools: ovs-ofctl, ovs-appctl

OVS Kernel Module
•  Kernel module that handles switching and tunneling
•  Fast cache of non-overlapping flows
•  Designed to be fast and simple

–  Packet comes in, if found, associated actions executed and
counters updated. Otherwise, sent to userspace

–  Does no flow expiration
–  Knows nothing of OpenFlow

•  Implements tunnels
•  Tools: ovs-dpctl

Userspace Processing
•  Packet received from kernel
•  Given to the classifier to look for matching flows

accumulates actions
•  If “normal” action included, accumulates actions from

“normal” processing, such as L2 forwarding and bonding
•  Actions accumulated from configured modules, such as

mirroring
•  Prior to 1.11, an exact match flow is generated with the

accumulated actions and pushed down to the kernel
module (along with the packet)

Kernel Processing
•  Packet arrives and header fields extracted
•  Header fields are hashed and used as an

index into a set of large hash tables
•  If entry found, actions applied to packet

and counters are updated
•  If entry is not found, packet sent to

userspace and miss counter incremented

OVS and Openflow
•  ovs-ofctl speaks to OpenFlow module

–  ovs-ofctl show <bridge>
–  ovs-ofctl dump-flows <bridge>
–  ovs-ofctl add-flow <bridge> <flow>
–  ovs-ofctl del-flows <bridge> [flow] • ovs-ofctl snoop <bridge>

•  OpenFlow plus extensions
–  Resubmit Action: Simulate multiple tables in a single table
–  NXM: Extensible match
–  Registers: Eight 32-bit metadata registers
–  Fine-grained control over multiple controllers

•  See “hidden” flows (in-band, fail-open, etc):
–  ovs-appctl bridge/dump-flows <bridge>

ovs-ofctl dump-flows

•  The default flow table includes a single

entry that does “normal” processing:

root@vm-vswitch:~# ovs-ofctl dump-flows br0!
 NXST_FLOW reply (xid=0x4):!
cookie=0x0, duration=4.05s, table=0,
n_packets=8, n_bytes=784, idle_age=0,
priority=0 actions=NORMAL!

Kernel Datapath
•  ovs-dpctl speaks to kernel module

See datapaths and their attached
interfaces:
– ovs-dpctl show

See flows cached in datapath:
– ovs-dpctl dump-flows

Flow Debugging
•  Flow tables can become incredibly complex, but OVS has tools to

make it easier to debug
•  Here is a set of rules to (poorly) implement a firewall (with an

unnecessary resubmit) to block all TCP traffic except port 80:
Move TCP traffic arriving on port 1 to next stage of “pipeline”!
priority=100,tcp,in_port=1 actions=resubmit:4000!
!
Allow port TCP port 80 traffic (and implicitly drop all others)!
priority=100,tcp,in_port=4000,tp_dst=80 actions=NORMAL!
!
Allow all non-TCP traffic arriving on port 1!
priority=90,in_port=1 actions=NORMAL!
!
Allow all traffic arriving on port 2!
priority=100,in_port=2 actions=NORMAL !

Tracing Flow (ICMP Allowed)

Tracing Flow (TCP allowed)

Tracing Flow (TCP denied)

Links
•  http://openvswitch.org/
•  Examples and diagrams from - http://

openvswitch.org/slides/
OpenStack-131107.pdf

