
RYU OpenFlow Controller

Dean Pemberton – NSRC
Andy Linton – NSRC

Sam Russell - REANNZ

What is Ryu?
•  Name comes from a Japanese word

meaning “flow”
•  Ryu manages “flow” control to enable

intelligent networking

Philosophy
•  Agile

– Framework for SDN application development
instead of all-purpose big monolithic
‘controller’.

•  Flexible
– Vendor-defined “Northbound” APIs are not

enough to differentiate.

Where does Ryu sit?

Architecture

Ryu: Component-based framework

•  Your application consists of component(s)
•  Ryu provides a bunch of components

useful for SDN applications.
•  You can modify the existing components

and implement your new components.
•  Combines the components to build your

application.

Components and libraries
included in Ryu

Current Status…
•  OpenFlow protocol

–  OF1.0 + nicira extensions, OF1.2, OF1.3, OF-Config
1.1

•  Other protocols
–  netconf, vrrp, xFlow, snmp, ovsdb

•  Ryu applications/libraries Topology viewer
–  OF REST
–  Firewall
–  Some sample apps are in the ryu/app directory

…Current Status
•  Switch Interoperability

– Referenced by some switch vendors
– Open vSwitch

•  Integration testing with Open vSwitch (OF1.0,
OF1.2) nicira extensions, OVSDB

•  Integration with other components
– HA with Zookeeper
–  IDS (Intrusion Detection System)
– OpenStack Quantum

Restful interface available

Firewall

Intrusion Detection System

L2 switch

Installation
•  Using pip command is the easiest option:
 % pip install ryu

•  If you prefer to install from the source
code:
% git clone git://github.com/osrg/ryu.git
% cd ryu; python ./setup.py install

What does the code look like?
class L2Switch(app_manager.RyuApp):

 def __init__(self, *args, **kwargs):
 super(L2Switch, self).__init__(*args, **kwargs)

 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
 def packet_in_handler(self, ev):
 msg = ev.msg
 dp = msg.datapath
 ofp = dp.ofproto
 ofp_parser = dp.ofproto_parser
 in_port = msg.match['in_port’]

…What does the code look like?

 actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
 out = ofp_parser.OFPPacketOut(
 datapath=dp, buffer_id=msg.buffer_id, in_port=in_port,
 actions=actions)
 dp.send_msg(out)

•  So is this a hub or a switch?
•  Should you use OFPPacketOut a lot?

So what’s missing?
•  Mac address table
•  Port up/down events
•  VLANs
•  LLDP
•  ???

Python Performance?
•  You need scalability probably

– Language runtime efficiency can’t solve
scalability problem

– Scalability about the whole system
architecture.

•  Still need to improve runtime efficiency
– Pypy: another python runtime using JIT.
– Using C for such components.

Future work
•  Make SDN development more agile

– Adds more components (protocols, IaaS,
stats, security, etc).

–  Introducing network abstraction model (hide
southbound difference, etc).

–  Improves distributed deployment component
(cluster support).

– New testing methods (Ryu has more than
15,000 lines test code).

Ryu is an ongoing project
•  Ryu project needs more developers

– NTT team wants to make Ryu usable for
many organizations.

– The development is truly open and Ryu
already has some code from non NTT
developers.

– NTT team would like to help you to use Ryu in
production.

Links
•  http://osrg.github.io/ryu/

