Securing network infrastructure

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

Our Goals

- Ensuring Network Availability
- Controlling Routing Policy
- Protecting Information
- Preventing Misuse
- Mitigating Attacks
- Responding to Incidents
- etc.

Risks

operations

- unauthorized access
- DoS
- route injection
- untraceable incident

attacker

AAA server and remote access

- Authentication, Authorization, Accounting
 - tacacs, radius
- each operators has own login account
 - You can set privileges per tasks of the operator
- logging at AAA servers
 - where (device)
 - who (login account)
 - what (command)

Remote Access to Devices

- in-band access
 - vty, snmp, ntp, etc...
 - IP reachability is required
 - useful for daily operations
- out-of-band access
 - serial console
 - workable without IP reachability
 - useful for restoration

Access Control for in-band access

- operations need to access remote devices
 - to manage the devices
- packet filtering on vty, snmp and etc
 - to protect devices from unauthorized access
 - allow access from trusted network only
 - source IP address based filtering

step hosts

- are placed on a trusted network
- useful to enforce more restricted control
- each operations has own login account

- logging on step hosts
 - typescript of a VTY session
 - login/logout

access control per services

Received/Router ACL (rACL)

access control against control plane

infrastructure ACL

- to protect our management traffic
 - not too much
 - ping, traceroute to our devices should be workable
- deny packets from INFRA to INFRA on edge
 - INFRA: routers, step hosts and so on
 - these ip range should be stayed inside

Infrastructure ACL (iACL)

enforce a policy on the network edge

multiple ACLs to protect Devices

protecting devices

Protecting Routing

- To keep your network working
 - as you designed
 - as you configured
- Static Routing
 - mostly depends on design
- Dynamic Routing
 - possibility of remote attacks

Routing Protocol

 Routers exchange routing information over a neighboring relationship.

Threat Model for Routing

- Neighboring Relationship
 - Unexpected Neighboring
 - Shutdown by Someone else
 - Spoofed Neighbor
- Routing Information
 - Propagation of Wrong Information
 - Unintended Routing Policy
 - Hit a Hardware Limitation

OSPF Neighbors

- Establishing a relationship among trusted neighbors only
- Disabled by default
 - Especially on a link to other parties (IX,customer)
 - to avoid unexpected neighbors
 - if you have to enable on these links, use 'passive' feature
 - Enabled where it is needed like backbone
- Authentication
 - MD5 authentication (OSPFv2, RFC2328)

OSPF md5 configuration

cisco

```
interface <interface_name>
ip ospf authentication message-digest
ip ospf message-digest-key <keyid#> md5 <md5_key>
```

juniper

```
protocols ospf {
  area <area#> {
  interface <interface_name> {
    authentication {
      md5 <keyid#> key "<md5_key>";
    }
  }
}
```

BGP4 Neighbors

- Protecting TCP sessions
 - md5 authentication
- Peering with other parties
 - possibility of injection
 - needs more attention about routing information

BGP md5 configuration

cisco

```
router bgp <as#>
neighbor <neighbor_ip> password <md5_key>
```

juniper

```
protocols bgp {
  neighbor <neighbor_ip> {
    authentication-key "<md5_key>";
}
```

Protecting routing information

OSPF

- mostly relies on neighboring
- IGP should be used for internal purpose
 - should not be used to share routing information with your customers

BGP

routing information is more problematic

IGP and EGP

- IGP
 - OSPF, IS-IS, BGP
 - intra-AS
- EGP
 - BGP only
 - inter-AS

BGP routing

- ISPs use BGP to carry routing information
 - full routes
 - customer routes
- need to peer with other parties
 - You know direct peering ASes
 - but not sure about ASes which are 2 or more AS hops away
 - You need to receive BGP announcements from such 'unsure' parties through peers

critical routing information inside AS

- iBGP neighbor
 - usually loopback interface
 - /32 announcement by IGP
 - the most preferred
- BGP nexthop
 - typical BGP nexthop
 - IX segment
 - peering link
 - customer link
 - route filtering on eBGP sessions
 - needs care about more-specifics

BGP UPDATE

- Prefixes + Path Attributes
- major attributes
 - − AS Path <</p>
 - localpreference
 - MED ←
 - nexthop
 - − bgp community <
 - and so on

exchanging routing information

upstream

- upstream announces full-route to us
- we announce ourselves + customer

peer

- peer announces their selves + their customer
- we announce ourselves + customer

customer

- customer announces their selves + their customer
- we announce full-route

BGP UPDATE from upstreams/peers

risks

- rogue announcement
 - default, own prefixes, private, linklocal, testnet
- too many prefixes

policy

- accepts most routes up to /24
 - filter rogues
- accepts basic routing control by AS Path
 - no MED, no BGP community
- limit # of prefixes

inbound route filter for upstreams/peers

- prefix filter
 - deny default (0.0.0.0/0)
 - deny private and other special prefixes
 - deny IIJ prefixes
 - deny IX segments which IIJ connects
 - accept prefixes up to /24
- resetting attribute
 - BGP community and MED
- prefix limitation
 - # of prefixes

special-use prefixes [RFC5735]

- private
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
- shared
 - -100.64.0.0/10
- loopback
 - -127.0.0.0/8
- linklocal
 - -169.254.0.0/16
- testnet and benchmark
 - 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 198.18.0.0/15
- IETF protocol assignments
 - **-** 192.0.0.0/24
- Multicast
 - -224.0.0.0/4

BGP UPDATE from customers

- risks
 - mis-announcement
- policy
 - accepts exact prefixes and AS Path which the customer asked for transit
 - accepts routing control
 - AS Path, MED and bgp community

inbound route filtering for customers

- prefix filter
 - accept exact prefixes which the customer asked for transit
- AS Path filter
 - accept AS Path which the customer asked for transit
- resetting attribute
 - BGP community
 - overwrite communities which the network uses internally

updating the route filter for customers

- customers ask you to update filters
 - prefixes and AS Path
- You should perform sanity check
 - registration check with IR(APNIC) and IRR
 - to avoid unauthorized announcement
 - aggregation check
 - to avoid unnecessary de-aggregation
 - ask the customer to set NO-EXPORT to localize the deaggregation prefixes

whois check

```
$ whois -h whois.nic.ad.jp '210.130.0.0/16 /e'
[ JPNIC database provides information regarding IP address and ASN. Its use ]
[ is restricted to network administration purposes. For further information, ]
[ use 'whois -h whois.nic.ad.jp help'. To only display English output,
[ add '/e' at the end of command, e.g. 'whois -h whois.nic.ad.jp xxx/e'.
Network Information:
[Network Number]
                           210.130.0.0/16
[Network Name]
[Organization]
                       Internet Initiative Japan Inc.
[Administrative Contact]
                            JP00010080
[Technical Contact]
                          JP00010080
[Abuse]
                     abuse-contact@iij.ad.jp
[Allocated Date]
                        1996/10/03
                       2007/06/28 10:26:08(JST)
[Last Update]
Less Specific Info.
No match!!
More Specific Info.
Too many matches. Narrower expression, please.
```

```
$ whois -h whois.nic.ad.jp 'JP00010080 /e'
[ JPNIC database provides information regarding IP address and ASN. Its use ]
[ is restricted to network administration purposes. For further information, ]
[ use 'whois -h whois.nic.ad.jp help'. To only display English output,
I add '/e' at the end of command, e.g. 'whois -h whois.nic.ad.jp xxx/e'.
Group Contact Information:
[Group Handle]
                         JP00010080
[Group Name]
                         IP Address Contact
[E-Mail]
                     nic-sec@iij.ad.jp
[Organization]
                        Internet Initiative Japan Inc.
[Division]
```

2005/08/23 14:02:22(JST)

03-5205-6500

[TEL]

[FAX]

[Last Update]

check authority before announcing it

- One ISP received allocation from JPNIC in 2006
 - before using it, they realized parts of the prefix was announced by ISP-A ☺
- This story was shared at JANOG meeting
 - I contacted the ISP-A to stop the announcement,
 and took 4 hours to fix. ©
 - The ISP-A announced it, because one customer asked to route it through their AS
 - probably the ISP-A didn't perform sanity-test properly

BGP announcement

- policy
 - Prefixes should be aggregated as possible
 - avoid any rogue announcement
- to upstreams/peers
 - its own and customers' prefixes
 - distinguished by BGP community
- to customers
 - full routes

Outbound route filtering

- prefix filter
 - deny private and other special prefixes
 - deny unnecessary more-specifics
 - deny too specifics (/25 or longer)
 - permit any
- remove private AS from AS Path
 - remove-private-as

BGP routing policy

- keep your policy simple
 - less trouble
- You should expect unexpected traffic flow change
 - one traffic engineering can break other traffic engineering
 - peering might help to get more stable traffic pattern

config audit

- configuration files are periodically gathered
 - by in-house automated tool
- sanity check
 - filtering rules
 - routing configuration
 - and so on

monitoring

- what's happened in the past
- syslog
 - to record messages from devices/softwares
- snmp
 - to monitor resources
- netflow
 - to monitor packet flows

syslog messages

 Nov 9 15:19:14.390 UTC: config[65775]: %MGBL-SYS-5-CONFIG_I : Configured from console by maz on vty0 (2001:db8:120:100:e1dd:97f3:fd98:a51f)

Nov 12 13:53:38 maz sudo: maz : user NOT in sudoers ; TTY=pts/3 ; PWD=/home/maz ; USER=root ; COMMAND=/bin/bash

synced timestamp

- makes log messages useful
 - to compare incidents among devices
 - to compare time-related events
- Use ntp to sync clocks
 - choose a proper clock source
 - national ntp server
 - stable clocks
 - ATOM, GPS

clock = oscillation + counter

- TAI = weighted average of atom clocks
 - TAI: International Atomic Time
- UTC = TAI + leap seconds
 - UTC: Coordinated Universal Time
 - leap seconds: to adjust clock to Earth's rotation
- atom clocks are adjusted to TAI
- localtime = UTC + timezone (+ summer time)

remote logging

- log messages could be modified/deleted
 - if the system is compromised
 - limited memory buffered log messages
- remote logging server

- syslog-ng
- enough storage there

43

protecting syslog

maz@iij.ad.jp

snmp

- can read/write information and send a trap
 - use version 3, and set password
 - prevent 'write' function, or just disable it on agents
 - put ACL to prevent unauthorized access
- require a little disk space on snmp manager
 - useful to check long-term trend

snmp monitoring system

maz@iij.ad.jp

snmp MIB

- Management information base
 - MIB-2, IF-MIB, vender-specific MIB
 - you can get information if an agent supports the MIB you want
- you can specify the information by OIDs
 - if HCinOctets = .1.3.6.1.2.1.31.1.1.1.6
 - ifHCOutOctets = .1.3.6.1.2.1.31.1.1.1.10

snmp counters

- frequency of updating counters
 - depends on agents (0-30sec)
 - 5min is widely used as snmp polling time
- counter overflow
 - 32bit counters(ifIn/OutOctets) could wrap in5.7min at 100Mbps
 - consider 64bit counters(ifHCInOctets) for 1Gbps
 or more interfaces

useful information via SNMP MIBs

- interface
 - bytes, packets, errors
- system
 - cpu load
 - memory usage
 - temperature
 - icmp, udp
 - ntp

snmp use case

- usage monitoring
 - bandwidth and traffic volume
- visualize
 - stackable graph
 - useful for multiple links between POPs
 - grouping
 - international links
 - |X

visualize

• RRDtools

netflow

- to monitor flow information
 - packet header
 - most routers support it
- require more storage
 - even with sampling, still need to expect huge data
 - not for long term monitoring
- useful for analysis and anomaly detection

netflow and sampling

- sampled netflow is widely used
 - just to know trend
 - to reduce data
- margin of error
 - sampled netflow and actual traffic
 - depends on routers
 - worst case: 20%
- IIJ uses magic number as sampling rate
 - -1/16382

netflow monitoring system

netflow analysis

- combination of parameters
 - AS, IP address, protocol, port number
 - too many patterns to pre-generate every graphs
- Graphs
 - pre-defined graphs
 - dynamic graph system

case 1: bps

traffic was suddenly doubled on a link

also found a missing traffic

case 1: 2 links between routers

maz@iij.ad.jp 57

case 1: total traffic: bps

case 2: bps

- traffic decreased
- There is no routing change in the network

case 2: netflow graph(dst AS)

- the dst AS based graph shows
 - missing traffic to several ASes
 - traffic to the other ASes also a bit decreased

case 2: netflow graph(src AS)

- traffic from a particular AS(blue) was gone
- probably something was happened on the AS(blue)
 - trouble or route change

case 3: bps

• traffic looks stable

case 3: pps

 pps(packets/sec) graph shows something anomaly

traceback by a shape

 if the traffic pattern is enough characteristic, you can traceback to the inbound interface

case 3: netflow graph(dst AS, pps)

 according to dst AS based graph, the anomaly traffic was directed to a particular AS(yellow)

case 3: netflow graph(protocol, pps)

the traffic profile was mostly UDP

monitoring and detection

- snmp is useful to check
 - trend
 - threshold
- netflow is useful to analysis
 - anomaly
 - change

Operational Design

