Intrusion Detection & SNORT

Fakrul Alam fakrul@bdhub.com

Sometimes, Defenses Fail

- Our defenses aren't perfect
 - Patches weren't applied promptly enough
 - Antivirus signatures not up to date
 - 0-days get through
 - Someone brings in an infected USB drive
 - An insider misbehaves
- Now what?
- Most penetrations are never detected
 - This allows continuing abuse, and helps the attackers spread elsewhere

Unexpected Activity

 There could be an intruder even if you have security practice in place

Additional Monitoring

What can IDS realistically do

- Detect successful attacks
- Look for various things that shouldn't be there
 - Infected files
 - Attacks on other machines
 - Packets that shouldn't exist
 - Strange patterns of behavior
- Contain attacks before they spread further
- Clean up penetrated machines—because you'll know they're infected
- Recognition of pattern reflecting known attacks
- Statistical analysis for abnormal activites

What IDS can't do

- Compensate for weak authentication & identification mechanisms
- Investigate attacks without human intervention
- Guess the content of your organization security policy
- Compensate for weakness in networking protocols, for example IP Spoofing

Monitoring Point

 More specific rules can be applied for a point close to end nodes

Network and Host IDS

IDS Technology landscape

TECHNOLOGY LANDSCAPE

Preventive Real Time

Alert

- You may receive tons of millions of alerts
 - Depending on your detection rules
 - There are many suspicious activities in the Internet today
- You should notice a critical one at least
 - Detection rule is important!

Alert

- False Positive / Type I Error:
 - is the incorrect rejection of a true null hypothesis
 - is when a system raises an incorrect alert
- False Negative / Type II Error:
 - is the failure to reject a false null hypothesis
 - is when an attack pass undetected

Types of Detection

- Signature Based
 - Match patterns against known attacks
 - Catch the intrusions in terms of the characteristics of known attacks or system vulnerabilities
- Anomaly Based
 - Look for unusual behavior
 - Detect any action that significantly deviates from the normal behavior

Intrusion Detection for ISPs

- Monitor your own network—but that's no different than any other enterprise
- Monitor your customers
 - Good: you can help them by detecting problems
 - Good: you can prevent them from clogging your infrastructure
 - Bad: it can be privacy-invasive

SNORT

- Snort is an open source IDS, and one of the oldest ones
- Hundreds of thousands of users
- Active development of rules by the community make Snort up to date, and often more so than commercial alternatives
- Snort is fast! It can run at Gbit/s rates with the right hardware and proper tuning

Where to put SNORT?

Where to put SNORT?

- Snort will need to be close to the "choke point" (the point where all traffic flows through on the way in or out of your network)
 - Inside of the border router or firewall, for example

Getting Snort to see the network

- You could run Snort in multiple ways
 - As a device "in line" behind or after the firewall/ router
 - But this adds one more element that can fail in your connectivity
 - Or you could use a span/mirror port to send traffic to Snort
 - Or you can use an "optical splitter" to "mirror" or "tap into" traffic from a fiber optic link
 - This method and the previous are the most recommended

Getting Snort to see the network

Getting Snort to see the network

Be careful not to overload your switch port –
 If you mirror a gigabit port to another gigabit port, the monitoring port (the receiving port) can drop packets if the total traffic exceeds 1 Gbit/s

Monitoring Port...

- On Cisco Catalyst, this is a "SPAN" port
- You can SPAN one port to another, a group of ports to one port, or an entire VLAN to a port
- Sample config:
- interface FastEthernet 0/1
- # port monitor FastEthernet 0/2
- This would copy any packet received on F0/2 to F0/1

Snort configuration file

- By default, /etc/snort/snort.conf
- It's a long file 900+ lines
- If you browse it, you will notice many "preprocessor" entries
- Snort has a number of "preprocessors" which will analyze the network traffic and possibly clean it up before passing it to the rules

Snort rules

- Snort rules are plain text files
- Adding new rules to snort is as simple as dropping the files into /etc/snort/rules/
- Groups of rules can be loaded from snort.conf using the "include" statement
- Rules can match anything
- Technical web attacks, buffer overflow, portscan, etc...
- Policy/user oriented URL filtering, keyword, forbidden applications, etc...

Tailoring the rules

- Not all rules will make sense in your network
- You will want to customize which rules you want to run
- Otherwise you will get many false positives, which will lead you to ignore Snort, or simply turn it of...
- It doesn't help to have logs full of junk alerts you don't want
- To avoid this, rules can be suppressed (disabled)

Updating Snort rules

- The commercially maintained snort rules are available for free with a 30 day delay from http://www.snort.org/start/rules
- Other rules are maintained by some volunteers at emerging threats: http:// rules.emergingthreats.net/open/
- The updating of rules can be automated with a tool called "Pulled Pork", which is located at http://code.google.com/p/pulledpork/

Sample rules

These signatures are not enabled by default as they may generate false # positive alarms on networks that do mysql development.

alert tcp \$EXTERNAL_NET any -> \$SQL_SERVERS 3306 (msg:"MYSQL root login attempt"; flow:to_server,established; content:"|0A 00 00 01 85 04 00 00 80| root |00|"; classtype:protocol-command-decode; sid:1775; rev:2;)

alert tcp \$EXTERNAL_NET any -> \$SQL_SERVERS 3306 (msg:"MYSQL show databases attempt"; flow:to_server,established; content:"|0F 00 00 00 03| show databases"; classtype:protocol-command-decode; sid:1776; rev:2;)

alert tcp \$EXTERNAL_NET any -> \$SQL_SERVERS 3306 (msg:"MYSQL 4.0 root login attempt"; flow:to_server,established; content:"|01|"; within:1; distance:3; content:"root|00|"; within:5; distance:5; nocase; classtype:protocol-command-decode; sid:3456; rev:2;)

Reporting and logging

- Snort can be made to log alerts to an SQL database, for easier searching
- A web front-end for Snort, BASE, allows one to browse security alerts graphically

BASE (Basic Analysis and Security Engine)

BASE (Basic Analysis and Security Engine)

References and documentation

- Snort preprocessors:
 - http://www.informit.com/articles/article.aspx? p=101148&seqNum=2
- Snort documentation
 - http://www.snort.org/docs
- An install guide for Ubuntu 10.04:
 - http://www.snort.org/assets/158/014snortinstallguide292.pdf

