

Encryption with GPG / OpenSSL

Simon M. Balthazar

Research and Education Network for Uganda:
Information Systems and Network Security

Workshop

27th - 31st October, 2014

Reminder: Core Security Principals

● Confidentiality
● Integrity
● Authentication

– Access Control
– Verification

● Availability

Reminder: Cryptographic Methods

● Critical for Confidentiality, Integrity and
Authentication.

● Indirectly leads to better Availability.
● Some methods and tools include:-

– SSH, TLS/SSL, PGP, MD5/SHA1, Ciphers,
DES/3DES/BLOWFISH, Private Keys, Public Keys,
Digital Signatures

GPG

● GNU Privacy Guard, a GPL licensed alternative
to the PGP suite of cryptographic software.

● GPG is a tool for secure communication.
● Part of Free Software Foundation's GNU

Software Project.
● Compatible with RFC 4880, IETF Standards

track specification of OpenPGP.

GPG Concepts
● Symmetric Ciphers

– Uses the same key for both encryption and
decryption.

● Public Key Ciphers
– Invented to solve key exchanges.
– Reduce the number of keys needed.
– Uses a pair of keys, Public and a Private key.

● Hybrid Ciphers
– Symmetric ciphers are stronger from security standing

point.
– Public keys are effective tools in distributing symmetric

cipher keys.
– PGP and GPG are both using hybrid ciphers.

GPG Concepts

● Digital Signatures
– Using an algorithm such as SHA and MD5, a document is

signed by hashing it, and the hash value is the signature.
– Another person can check the signature by hashing their

copy of the document and compare the hash value with
the original document.

Key Management

● Its possible for an attacker to temper with your
keyring.

● Key management is done by signing keys. Key
signing has two purposes

– It permits you to detect key tempering in your keyring
– It allows you to certify the key truly belongs to the person

named by a uid on the key.

Web of Trust

● Validating other keys in your keyring requires
that you check the fingerprint of the key, and
you sign his public key with your private key.

● This can be tedious when either you must
validate large number of keys or when you
communicate with people you don't know
personally.

● Web of Trust delegates responsibility of
validating public keys to people you trust.

Key Distribution
● Public keys are ideally distributed by giving it to

you correspondents, by email or some other
electronic correspondents.

● The most effective way of distributing keys is
the use of public key servers. Public keys are
received by the server is either added to the
server's database or merged with the existing
key if already present.

● When a key request comes to the server, the
server consults its database and returns the
requested public key if found.

Example: TLS (SSL) web server
with digital certificate

I generate a private key on my webserver

I send my public key plus my identity (my
webserver's domain name) to a certificate
authority (CA)

The CA manually checks that I am who I say I am,
i.e. I own the domain

They sign a certificate containing my public key,
my domain name, and an expiration date

I install the certificate on my web server

When a client's web browser connects to me
using HTTPS:

They negotiate an encrypted session with me, during
which they learn my public key

I send them the certificate

They verify the certificate using the CA's public key,
which is built-in to the browser

If the signature is valid, the domain name in the URL
matches the domain name in the certificate, and the
expiration date has not passed, they know the connection
is secure

The security of TLS depends on:

Your webserver being secure
– So nobody else can obtain your private key

The CA's public key being in all browsers

The CA being well managed
- How carefully do they look after their own private keys?

The CA being trustworthy
Do they vet all certificate requests properly?

Could a hacker persuade the CA to sign their key pretending
to be someone else? What about a government?

Testing TLS (SSL) Applications

There is an equivalent of telnet you can use: openssl s_client

It opens a TCP connection, negotiates TLS, then lets you type
data

$ openssl s_client -connect domain-name:443

END

simon@tznic.or.tz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

