Campus Networking Workshop Layer 2 engineering – Spanning Tree and VLANs - When there is more than one path between two switches - What are the potential problems? - If there is more than one path between two switches: - Forwarding tables become unstable - Source MAC addresses are repeatedly seen coming from different ports - Switches will broadcast each other's broadcasts - All available bandwidth is utilized - Switch processors cannot handle the load Switches A, B and C broadcast node 1's frame out every port - But they receive each other's broadcasts, which they need to forward again out every port! - •The broadcasts are amplified, creating a **broadcast storm** ## Good Switching Loops - But you can take advantage of loops! - Redundant paths improve resilience when: - A switch fails - Wiring breaks - How to achieve redundancy without creating dangerous traffic loops? ## What is a Spanning Tree - "Given a connected, undirected graph, a spanning tree of that graph is a subgraph which is a tree and connects all the vertices together". - A single graph can have many different spanning trees. # Spanning Tree Protocol The purpose of the protocol is to have bridges dynamically discover a subset of the topology that is loop-free (a tree) and yet has just enough connectivity so that where physically possible, there is a path between every switch ## **Spanning Tree Protocol** - Several flavors: - Traditional Spanning Tree (802.1d) - Rapid Spanning Tree or RSTP (802.1w) - Multiple Spanning Tree or MSTP (802.1s) ### Traditional Spanning Tree (802.1d) - Switches exchange messages that allow them to compute the Spanning Tree - These messages are called BPDUs (Bridge Protocol Data Units) - Two types of BPDUs: - Configuration - Topology Change Notification (TCN) ### Traditional Spanning Tree (802.1d) #### First Step: - Decide on a point of reference: the *Root Bridge* - The election process is based on the Bridge ID, which is composed of: - The Bridge Priority: A two-byte value that is configurable - The MAC address: A unique, hardcoded address that cannot be changed. #### Root Bridge Selection (802.1d) - Each switch starts by sending out BPDUs with a Root Bridge ID equal to its own Bridge ID - I am the root! - Received BPDUs are analyzed to see if a <u>lower</u> Root Bridge ID is being announced - If so, each switch replaces the value of the advertised Root Bridge ID with this new lower ID - Eventually, they all agree on who the Root Bridge is #### Root Bridge Selection (802.1d) - All switches have the same priority. - Who is the elected root bridge? - Now each switch needs to figure out where it is in relation to the Root Bridge - Each switch needs to determine its Root Port - The key is to find the port with the <u>lowest</u> Root Path Cost - The cumulative cost of all the links leading to the Root Bridge - Each link on a switch has a Path Cost - Inversely proportional to the link speed - e.g. The faster the link, the lower the cost | Link Speed | STP Cost | |------------|----------| | 10 Mbps | 100 | | 100 Mbps | 19 | | 1 Gbps | 4 | | 10 Gbps | 2 | - Root Path Cost is the accumulation of a link's Path Cost and the Path Costs learned from neighboring Switches. - It answers the question: How much does it cost to reach the Root Bridge through this port? - Root Bridge sends out BPDUs with a Root Path Cost value of 0 - 2. Neighbor receives BPDU and adds port's Path Cost to Root Path Cost received - 3. Neighbor sends out BPDUs with new cumulative value as Root Path Cost - 4. Other neighbors down the line keep adding in the same fashion - On each switch, the port where the lowest Root Path Cost was received becomes the Root Port - This is the port with the best path to the Root Bridge - What is the Path Cost on each Port? - What is the Root Port on each switch? #### Electing Designated Ports (802.1d) - OK, we now have selected root ports but we haven't solved the loop problem yet, have we - The links are still active! - Each network segment needs to have only one switch forwarding traffic to and from that segment - Switches then need to identify one *Designated Port* per link - The one with the lowest cumulative Root Path Cost to the Root Bridge #### Electing Designated Ports(802.1d) Which port should be the Designated Port on each segment? ### Electing Designated Ports (802.1d) - Two or more ports in a segment having identical Root Path Costs is possible, which results in a tie condition - All STP decisions are based on the following sequence of conditions: - Lowest Root Bridge ID - Lowest Root Path Cost to Root Bridge - Lowest Sender Bridge ID - Lowest Sender Port ID ### Electing Designated Ports(802.1d) ### Blocking a port - Any port that is not elected as either a Root Port, nor a Designated Port is put into the **Blocking State**. - This step effectively breaks the loop and completes the Spanning Tree. #### Designated Ports on each segment (802.1d) Port 2 in Switch C is then put into the Blocking State because it is neither a Root Port nor a Designated Port # Spanning Tree Protocol States - Disabled - Port is shut down - Blocking - Not forwarding frames - Receiving BPDUs - Listening - Not forwarding frames - Sending and receiving BPDUs # Spanning Tree Protocol States - Learning - Not forwarding frames - Sending and receiving BPDUs - Learning new MAC addresses - Forwarding - Forwarding frames - Sending and receiving BPDUs - Learning new MAC addresses # STP Topology Changes - Switches will recalculate if: - A new switch is introduced - It could be the new Root Bridge! - A switch fails - A link fails ### Root Bridge Placement - Using default STP parameters might result in an undesired situation - Traffic will flow in non-optimal ways - An unstable or slow switch might become the root - You need to plan your assignment of bridge priorities carefully ### Bad Root Bridge Placement ### Good Root Bridge Placement # Protecting the STP Topology - Some vendors have included features that protect the STP topology: - Root Guard - BPDU Guard - Loop Guard - UDLD - Etc. ### STP Design Guidelines - Enable spanning tree even if you don't have redundant paths - Always plan and set bridge priorities - Make the root choice deterministic - Include an alternative root bridge - If possible, do not accept BPDUs on end user ports - Apply BPDU Guard or similar where available ### 8021.d Convergence Speeds - Moving from the Blocking state to the Forwarding State takes at least 2 x Forward Delay time units (~ 30 secs.) - This can be annoying when connecting end user stations - Some vendors have added enhancements such as PortFast, which will reduce this time to a minimum for edge ports - Never use PortFast or similar in switch-to-switch links - Topology changes typically take 30 seconds too - This can be unacceptable in a production network # Rapid Spanning Tree (802.1w) - Convergence is much faster - Communication between switches is more interactive - Edge ports don't participate - Edge ports transition to forwarding state immediately - If BPDUs are received on an edge port, it becomes a non-edge port to prevent loops #### Questions? # Virtual LANs (VLANs) - Allow us to split switches into separate (virtual) switches - Only members of a VLAN can see that VLAN's traffic - Inter-vlan traffic must go through a router - Allow us to reuse router interfaces to carry traffic for separate subnets - E.g. sub-interfaces in Cisco routers #### Local VLANs - 2 VLANs or more within a single switch - Edge ports, where end nodes are connected, are configured as members of a VLAN - The switch behaves as several virtual switches, sending traffic only within VLAN members #### **Local VLANs** #### VLANs across switches - Two switches can exchange traffic from one or more VLANs - Inter-switch links are configured as trunks, carrying frames from all or a subset of a switch's VLANs - Each frame carries a tag that identifies which VLAN it belongs to #### 802.1Q - The IEEE standard that defines how ethernet frames should be tagged when moving across switch trunks - This means that switches from different vendors are able to exchange VLAN traffic. # 802.1Q tagged frame #### Normal Ethernet frame | Preamble: 7 SFD: 1 DA: 6 SA: 6 Type/Length: 2 Data: 46 to 1500 CRC: 4 | |---| |---| | User Priority | CFI | 12 bits of VLAN ID to identify 4,096 possible VLANs | |---------------|-------|---| | 3 bits | 1 bit | 12 bits | #### VLANs across switches This is called "VLAN Trunking" # Tagged vs. Untagged - Edge ports are not tagged, they are just "members" of a VLAN - You only need to tag frames in switch-toswitch links (trunks), when transporting multiple VLANs - A trunk can transport both tagged and untagged VLANs - As long as the two switches agree on how to handle those #### VLANs increase complexity - You can no longer "just replace" a switch - Now you have VLAN configuration to maintain - Field technicians need more skills - You have to make sure that all the switchto-switch trunks are carrying all the necessary VLANs - Need to keep in mind when adding/removing VLANs #### Good reasons to use VLANs - You want to segment your network into multiple subnets, but can't buy enough switches - Hide sensitive infrastructure like IP phones, building controls, etc. - Separate control traffic from user traffic - Restrict who can access your switch management address #### Bad reasons to use VLANs - Because you can, and you feel cool ☺ - Because they will completely secure your hosts (or so you think) - Because they allow you to extend the same IP network over multiple separate buildings - This is actually very common, but a bad idea # Do not build "VLAN spaghetti" - Extending a VLAN to multiple buildings across trunk ports - Bad idea because: - Broadcast traffic is carried across all trunks from one end of the network to another - Broadcast storm can spread across the extent of the VLAN, and affect all VLANS! - Maintenance and troubleshooting nightmare #### Link Aggregation - Also known as port bundling, link bundling - You can use multiple links in parallel as a single, logical link - For increased capacity - For redundancy (fault tolerance) - LACP (Link Aggregation Control Protocol) is a standardized method of negotiating these bundled links between switches #### **LACP** Operation - Two switches connected via multiple links will send LACPDU packets, identifying themselves and the port capabilities - They will then automatically build the logical aggregated links, and then pass traffic. - Switch ports can be configured as active or passive #### **LACP** Operation - Switches A and B are connected to each other using two sets of Fast Ethernet ports - LACP is enabled and the ports are turned on - Switches start sending LACPDUs, then negotiate how to set up the aggregation #### LACP Operation - The result is an aggregated 200 Mbps logical link - The link is also fault tolerant: If one of the member links fail, LACP will automatically take that link off the bundle, and keep sending traffic over the remaining link # Distributing Traffic in Bundled Links - Bundled links distribute frames using a hashing algorithm, based on: - Source and/or Destination MAC address - Source and/or Destination IP address - Source and/or Destination Port numbers - This can lead to unbalanced use of the links, depending on the nature of the traffic - Always choose the load-balancing method that provides the most distribution #### Questions? - Minimum features: - Standards compliance - Encrypted management (SSH/HTTPS) - VLAN trunking - Spanning Tree (RSTP at least) - SNMP - At least v2 (v3 has better security) - Traps - Other recommended features: - DHCP Snooping - Prevent end-users from running a rogue DHCP server - Happens a lot with little wireless routers (Netgear, Linksys, etc) plugged in backwards - Uplink ports towards the legitimate DHCP server are defined as "trusted". If DHCPOFFERs are seen coming from any untrusted port, they are dropped. - Other recommended features: - Dynamic ARP inspection - A malicious host can perform a man-in-the-middle attack by sending gratuitous ARP responses, or responding to requests with bogus information - Switches can look inside ARP packets and discard gratuitous and invalid ARP packets. - Other recommended features: - IGMP Snooping: - Switches normally flood multicast frames out every port - Snooping on IGMP traffic, the switch can learn which stations are members of a multicast group, thus forwarding multicast frames only out necessary ports - Very important when users run Norton Ghost, for example. # Network Management - Enable SNMP traps and/or syslog - Collect and process in centralized log server - Spanning Tree Changes - Duplex mismatches - Wiring problems - Monitor configurations - Use RANCID to report any changes in the switch configuration # Network Management - Collect forwarding tables with SNMP - Allows you to find a MAC address in your network quickly - You can use simple text files + grep, or a web tool with DB backend - Enable LLDP (or CDP or similar) - Shows how switches are connected to each other and to other network devices #### Documentation - Document where your switches are located - Name switch after building name - E.g. building1-sw1 - Keep files with physical location - Floor, closet number, etc. - Document your edge port connections - Room number, jack number, server name #### Questions? Thank you.