

Linux System Administration

Getting started with Linux

0101101011000110101000111010011

0111010110101100011010100011101

Day 1: Modules

- 1. Linux overview
- 2. Command Line Interface or the "CLI"
- 3. Permissions
- 4. Editors
- 5. Ubuntu Linux and more commands

Module 1: Linux Overview

UNIX History

Unix vs. Linux

Are they the same?

Yes, at least in terms of operating system interfaces Linux was developed independently from Unix Unix is much older (1969 vs. 1991)

Scalability and reliability

Both scale very well and work well under heavy load (this is an understatement)

Flexibility

Both emphasize small, interchangeable components

Manageability

Remote logins rather than GUI Scripting is integral

Security

Due to modular design has a reasonable security model Linux and its applications are not without blame

Is free software really any good?!

- The people who write it also use it
- Source code is visible to all
 - The quality of their work reflects on the author personally
 - Others can spot errors and make improvements
- What about support?
 - documentation can be good, or not so good
 - mailing lists; search the archives first
 - if you show you've invested time in trying to solve a problem, others will likely help you
 - http://www.catb.org/~esr/faqs/smart-questions.html

Is free software really any good?!

Core Internet services run on free software

- BIND Domain Name Server
- Apache web server (secure SSL as well)
- Sendmail, Postfix, Exim for SMTP/POP/IMAP
- MySQL and PostgreSQL databases
- PHP, PERL, Python, Ruby, C languages

Several very high profile end-user projects

- Firefox, original Netscape browser
- OpenOffice / LibreOffice
- Thunderbird, Gimp, Gnome and KDE Desktops
- Ubuntu

What's running Linux?

- 90% of the supercomputer TOP500, including all TOP 10
- Half of the world's 10 most reliable hosting companies
- The Internet of Things (to some extent)
- Maybe your smart phone?
 Android is based on Linux

The Unix/Linux System

Kernel

The "core" of the operating system

Device drivers

- communicate with your hardware
- block devices, character devices, network devices, pseudo devices (/dev/null)

Filesystems

- organize block devices into files and directories

Memory management

Timeslicing (multitasking)

Networking stacks - esp. TCP/IP

Enforces security model

Shells

Command line interface for executing programs

- Windows equivalent: command.com or command.exe
 Also programming languages for scripting
- DOS/Windows equivalent: batch files, WSF, VBScript Choice of similar but slightly different shells
 - sh: the "Bourne Shell". Standardised in POSIX
 - csh: the "C Shell". Not standard, but includes command history
 - bash: the "Bourne-Again Shell". Combines POSIX standard with command history.
 - Others: ksh, tcsh, zsh

User processes

- The programs that you choose to run
- Frequently-used programs tend to have short cryptic names
 - "ls" = list files
 - "cp" = copy file
 - "rm" = remove (delete) file
- Lots of stuff included in most base systems
 - editors, compilers, system admin tools
- Lots more stuff available to install too
 - Using the Debian/Ubuntu repositories

System processes

Programs that run in the background; also known as "daemons" ==> **

Examples:

- cron: executes programs at certain times of day
- syslogd: takes log messages and writes them to files
- **inet**<u>d</u>: accepts incoming TCP/IP connections and starts programs for each one
- sshd: accepts incoming logins
- sendmail (or other MTA daemon like Postfix): accepts incoming mail

^{* &}quot;Sparky" from the FreeBSD world

Security model

Numeric IDs

user id (uid 0 = "root", the superuser) group id supplementary groups

Mapped to names

/etc/passwd, /etc/group (plain text files)

Suitable security rules enforced

e.g. you cannot kill a process running as a different user, unless you are "root"

Filesystem security

Each file and directory has three sets of permissions

- For the file's uid (user)
- For the file's gid (group)
- For everyone else (other)

Each set of permissions has three bits: rwx

- File: r=read, w=write, x=execute
- Directory: r=list directory contents, w=create/delete files within this directory, x=enter directory (executable)

Filesystem security

The permission flags are read as follows left to right:

```
-rw-r--r-- for regular files,
drwxr-xr-x for directories
```

We will see permissions in detail later in the day.

Any questions?

Standard filesystem layout

```
essential binaries
/bin
                     kernel and boot support
/boot
/dev
                     device access nodes
                     pseudo-filesystem with
/proc
                     config/system info
                     configuration data
/etc
    /etc/default
                     package startup defaults
    /etc/init.d
                     startup scripts
/home/username
                     user's "home" directory
/lib
                     essential libraries
/sbin
                     essential sysadmin tools
                     temporary files
/tmp
                     programs & appl. data
/usr
                     changing files (logs,
/var
                     E-mail messages,
                     queues, ...)
```

Don't confuse the "root account" (/root) with the "root" ("/") partition.

More filesystem details

```
/usr
                       binaries
    /usr/bin
                       libraries
    /usr/lib
                       sysadmin binaries
   /usr/sbin
                       misc application data
   /usr/share
   /usr/src
                       kernel source code
    /usr/local/...
                       3rd party applications
                       not installed with apt
/var
                       log files
    /war/log
    /var/mail
                       mailboxes
   /var/run
                       process status
    /var/spool
                       queue data files
    /var/tmp
                       temporary files
```

Log files (a few examples)

```
/var
  /var/log
  /var/log/apache2
  /var/log/apache2/access.log
  /var/log/apache3/error.log
  /var/log/auth.log
  /var/log/boot.log
  /var/log/dmesg
  /var/log/kern.log
  /var/log/mail.info
  /var/log/mail.err
  /var/log/mail.log
  /var/log/messages
  /var/log/mysql
  /var/log/syslog
```

Log file: who & what's doing what

The most critical place to solve problems

- System messages, including:
 - Problems
 - Security issues
 - Configuration errors
 - Access issues
- Service messages, including:
 - Same as above

When something does not work...

...Look in your log files first!

Partitioning considerations

- Single large partition or multiple?
- A single partition is flexible, but a rogue program can fill it up...
- Multiple partitions provides a more "protected" approach, but you may need to resize later, on older filesystems, or without a "Volume Manager"
 - Is /var big enough? /tmp?
 - How much swap should you define?

Note...

- Partitioning is just a logical division
- If your hard drive dies, most likely everything will be lost.
- If you want data security, then you need to set up mirroring or RAID with a separate drive.

Remember, "rm -rf /" on a mirror will erase everything on both disks ©

Data Security <==> Backup

/dev

Virtual files pointing to hardware or other

/dev/sda = the first harddisk (SCSI/SATA/SAS or IDE)

Dynamically created /dev entries

e.g. when you plug in a new USB device

pseudo-devices:

/dev/null /dev/random

Sample Linux File System

How Does Linux boot?

- The BIOS loads and runs the MBR:
 - The *Master Boot Record* points to a default partition, or lets you select the boot partition
- MBR code then loads the boot loader, such as GRUB
- Boot loader reads configuration parameters (/boot) presents the user with options on how to boot system
- kernel is loaded and started, filesystems are mounted, modules are loaded
- init(8) process is started
- system daemons are started

http://en.wikipedia.org/wiki/Linux_startup_process

Any questions?

Packages & Exercises

We'll reinforce some of these concepts using exercises...

Right now please connect to your virtual Linux machine using SSH. Your instructor and workshop assistants will assist you with this:

- Windows ssh client available at
 - http://noc.ws.nsrc.org/downloads/putty.exe
- ssh sysadm@pcX.ws.nsrc.org
 - User: sysadm
 - Host: pcX.ws.nsrc.org
- Accept the SSH key when asked
- Use password given in class
- # exit

Packages & Exercises

We'll run a few commands to get started:

```
    ls (list files / directories)
    pwd (current working directory)
    man man (manual or help)
```

- ...
- •
- •

There's More

But, hopefully enough to get us started...

Some Resources

http://www.ubuntu.com

http://ubuntuforums.org

http://www.debian.org

http://ubuntuguide.org

http://en.wikipedia.org/wiki/Debian

http://en.wikipedia.org/wiki/Ubuntu_(Linux_distribution)

GIYF (Google Is Your Friend)