UNIX Concepts

AFNOG Chix 2015 Maseru, Lesotho 16th Nov - 20th Nov 2015

Presented by Anna Saine

(Credits: NSRC Documentation)

Why use UNIX? Quick Reminder

- Scalability and reliability
 - has been around for many years
 - works well under heavy load
- Flexibility
 - emphasizes small, interchangeable components
- Manageability
 - remote logins rather than GUI
 - scripting
- Security
 - Built in a modular fashion that helps to facilitate securing the OS.

Simplified Unix family tree (Look at the wall, maybe...:-))

Is free software really any good?!

- The people who write it also use it
- Source code is visible to all
 - The quality of their work reflects on the author personally
 - Others can spot errors and make improvements
- What about support?
 - documentation can be good, or not so good
 - mailing lists; search the archives first
 - if you show you've invested time in trying to solve a problem, others will likely help you
 - http://www.catb.org/~esr/faqs/smart-questions.html

Is free software really any good?

- Core Internet services run on free software
 - BIND Domain Name Server
 - Apache web server (secure SSL as well)
 - Sendmail, Postfix, Exim for SMTP/POP/IMAP
 - MySQL and PostgreSQL databases
 - PHP, PERL, Python, Ruby, C languages
- Several very high profile end-user projects
 - Firefox, original Netscape browser
 - OpenOffice
 - Thunderbird
 - Ubuntu

FreeBSD: Why it's Cool

- Uses a single source tree
- FreeBSD project is a non-commercial & independent
- FreeBSD uses the BSD license vs. the *more* restrictive GPL license
- Proven over many years at many sites
- Excellent software package system
- Updating and upgrading FreeBSD is reliable and can be done without a binary install
- FreeBSD has a massive software repository (21788 ports as of May 2010).

FreeBSD: Why it's Cool

- FreeBSD can run Linux applications, and it can run them as efficiently as Linux in most cases
- Several superior FreeBSD features include:
 - Indexed database file for user passwords
 - Software RAID such as geom
 - ZFS file system support
 - A large and experienced community for support
 - Cool, geeky logos ==>

First topics:

- Unix birds-eye overview
- Partitioning
- FreeBSD installation

The UNIX system

Kernel

- The "core" of the operating system
- Device drivers
 - communicate with your hardware
 - block devices, character devices, network devices, pseudo devices
- Filesystems
 - organise block devices into files and directories
 - data structure that allows data on a disk to be organised and accessed by the user
- Memory management
- Timeslicing (multiprocessing)
- Networking stacks esp. TCP/IP
- Enforces security model

Shell

- Command line interface for executing programs
 - DOS/Windows equivalent: command.com or command.exe
- Choice of similar but slightly different shells
 - sh: the "Shell". Standardised in POSIX (\$ prompt)
 - csh: the "C Shell". Not standard but includes command history (% prompt)
 - bash: the "Bourne-Again Shell". Is POSIX standard with command history, up-arrow' and 'down-arrow' recall of previous commands and the use of the TAB key to complete commands. Distributed under GPL (more restrictive than BSD license)

Shell

- Check your shell : # echo \$SHELL
- Change your shell: # chsh /usr/local/bin/bash
- Define how your shell behaves in files like:
 - ~/.profile
 - ~/.login
 - ~/.bashrc
 - /etc/profile
 - Please note ~ indicated home directory
- The shell interprets commands for the operating system kernel.

User processes

- . The programs that you choose to run
- Frequently-used programs tend to have short cryptic names
 - _ "**Is**" = list files
 - "cp" = copy file
 - "cd" = change directory
 - "rm" = remove (delete) file
- Lots of stuff included in the base system
 - editors, compilers, system admin tools
- Lots more stuff available to install too
 - packages / ports

System processes

Programs that run in the background; also known as "daemons"

• Examples:

- cron: executes programs at certain times of day
- syslogd: takes log messages and writes them to files
- inetd: accepts incoming TCP/IP connections and starts programs for each one
- sshd: accepts incoming logins
- sendmail (other MTA daemon like Exim): accepts incoming mail

Security model

- Numeric IDs
 - user id (uid 0 = "root", the superuser)
 - group ids
 - supplementary groups
- Mapped to names
 - /etc/passwd, /etc/group (plain text files)
 - /etc/pwd.db (fast indexed database)
- Suitable security rules enforced
 - e.g. you cannot kill a process running as a different user, unless you are "root"

Any questions?

Some reminders about PC architecture

- When your computer turns on, it starts a bootup sequence in the BIOS
- The BIOS locates a suitable boot source (e.g. floppy, harddrive, CD-ROM, network)
- The very first block is the MBR (Master Boot Record)
- The BIOS loads and runs the code in the MBR, which continues the bootup sequence

Partitioning

- The MBR contains a table allowing the disk to be divided into (up to) four partitions
- Beyond that, you can nominate one partition as an "extended partition" and then further subdivide it into "logical partitions"
- FreeBSD has its own partitioning system, because Unix predates the PC
- FreeBSD recognises MBR partitions, but calls them "slices" to avoid ambiguity

FreeBSD partitions

- Partitions (usually) sit within a slice
- Partitions called a,b,c,d,e,f,g,h
- CANNOT use 'c'
 - for historical reasons, partition 'c' refers to the entire slice
- By convention, 'a' is root partition and 'b' is swap partition
- 'swap' is optional, but used to extend capacity of your system RAM

Simple partitioning: /dev/ad0

^{*} Clearly an old, teeny, tiny disk :-)

'Auto' partition does this:

- Small root partition
 - this will contain everything not in another partition
 - /boot for kernel, /bin, /sbin etc.
- A swap partition for virtual memory
- Small /tmp partition
 - so users creating temporary files can't fill up your root partition
- Small /var partition
- Rest of disk is /usr
 - Home directories are /usr/home/<username>

Issues

- /var may not be big enough
- /usr contains the OS, 3rd party software, and your own important data
 - If you reinstall from scratch and erase /usr, you will lose your own data
- /tmp could overwhelm "/"
- /usr/home can fill up /usr, some sites mount (separate out) /usr/home as well.

Core directory refresher

- //boot, /bin, /sbin, /etc, maybe /tmp)
 /var (Log files, spool, maybe user mail)
 /usr (Installed software and home dirs)
 Swap (Virtual memory)
- /tmp (May reside under "/")

Don't confuse the "root account" (/root) with the "root" partition.

Notes...

- Slicing/partition is just a logical division
- If your hard drive dies, most likely everything will be lost
- If you want data integrity, then you need to set up mirroring with a separate drive
 - Remember, "rm -rf" on a mirror works very well
- If you want proper data security then you need to backup. RAID *does not* secure your data.

Summary: block devices

- IDE (ATAPI) disk drives
 - /dev/ad0
 - /dev/ad1 ...etc
- SCSI or SCSI-like disks (e.g. USB flash, SATA)
 - /dev/da0
 - /dev/da1 ...etc
- IDE (ATAPI) CD-ROM
 - /dev/acd0 ...etc
- Traditional floppy drive
 - /dev/fd0

Summary

- Slices
 - /dev/ad0s1
 - /dev/ad0s2
 - /dev/ad0s3
 - /dev/ad0s4
- Defined in MBR
- What PC heads call "partitions"

- BSD Partitions
 - /dev/ad0s1a
 - /dev/ad0s1b
 - /dev/ad0s1d ...etc
 - /dev/ad0s2a
 - /dev/ad0s2b
 - /dev/ad0s2d ...etc
- Conventions:
 - 'a' is /
 - 'b' is swap
 - 'c' cannot be used

Any questions?

Installing Software in FreeBSD

- Several different methods
 - ports
 - packages
 - source
 - binary
- We will go in to detail on these methods later in the workshop.

How Does FreeBSD Start?

- . The BIOS loads and runs the MBR
 - The MBR is not part of FreeBSD
- A series of "bootstrap" programs are loaded
 - see "man boot"
 - -/boot.config parameters for the boot blocks

(optional)

- -/boot/boot1 first stage bootstrap file
- -/boot/boot2 second stage bootstrap file
- -/boot/loader third stage bootstrap
- Kernel is loaded, and perhaps some modules
 - controlled by /boot/loader.conf

How Does FreeBSD Start?

- The root filesystem is mounted
 - "root" = "/" or something like "ad0s1a"
- /sbin/init is run and executes the main startup
 script /etc/rc
- This in turn runs other scripts /etc/rc.d/*
 - /etc/rc.conf is used to decide whether a service is started or not and to specify options.

Finding more information

- Our reference handout
 - a roadmap!
- man pages
 - esp. when you know the name of the command
- www.freebsd.org
 - handbook, searchable website / mail archives
- "Absolute FreeBSD" (O'Reilly)
- comp.unix.shell FAQ
 - http://www.faqs.org/faqs/by-newsgroup/comp/comp.unix.shell.html
- STFW (Search The Friendly Web) GIYF...

