

Deploying MPLS Traffic Engineering

Agenda

- Technology Overview
- Bandwidth optimization
- TE for QoS
- Traffic Protection
- Inter-Domain Traffic Engineering
- General Deployment Considerations

Technology Overview

MPLS TE Overview

- Introduces explicit routing
- Supports constraint-based routing
- Supports admission control
- Provides protection capabilities
- Uses RSVP-TE to establish LSPs
- Uses ISIS / OSPF extensions to advertise link attributes

How MPLS TE Works

- Link information Distribution*
 ISIS-TE
 - OSPF-TE
- Path Calculation (CSPF)*
- Path Setup (RSVP-TE)
- Forwarding Traffic down Tunnel

Auto-route (announce / destinations)

Static route

PBR

CBTS / PBTS

Forwarding Adjacency

Tunnel select

TE LSP

Link Information Distribution

Additional link characteristics

Interface address

Neighbor address

Physical bandwidth

Maximum reservable bandwidth

Unreserved bandwidth (at eight priorities)

TE metric

Administrative group (attribute flags)

- IS-IS or OSPF flood link information
- All TE nodes build a TE topology database
- Not required if using off-line path computation

Path Calculation

- TE nodes can perform constraintbased routing
- Tunnel head end generally responsible for path calculation
- Constraints and topology database as input to path computation
- Shortest-path-first algorithm ignores links not meeting constraints
- Tunnel can be signaled once a path is found
- Not required if using offline path computation

TE LSP Signaling

- Tunnel signaled with TE extensions to RSVP
- Soft state maintained with downstream PATH messages
- Soft state maintained with upstream RESV messages
- New RSVP objects

```
LABEL_REQUEST (PATH)

LABEL (RESV)

EXPLICIT_ROUTE

RECORD_ROUTE (PATH/RESV)

SESSION_ATTRIBUTE (PATH)
```

 LFIB populated using RSVP labels allocated by RESV messages

Traffic Selection

© 2015 Cisco and/or its affiliates. All rights reserved.

Multiple traffic selection options

Auto-route

Static routes

Policy Based Routing

Forward Adjacency

Pseudowire Tunnel Selection

Class / Policy Based Tunnel Selection

- Tunnel path computation independent of routing decision injecting traffic into tunnel
- Traffic enters tunnel at head end

Configuring MPLS TE and Link Information Distribution Using IS-IS (Cisco IOS)

Apricot 2015

Configuring MPLS TE and Link Information Distribution Using OSPF (Cisco IOS)

Configuring MPLS TE and Link Information Distribution Using IS-IS (Cisco IOS XR)

Configuring MPLS TE and Link Information Distribution Using OSPF (Cisco IOS XR)

Configuring Tunnel at Head End (Cisco IOS)

Configuring Tunnel at Head End (Cisco IOS XR)

Characteristics of P2MP TE LSP

- Unidirectional
- Explicitly routed
- One head end, but one or more tail ends (destinations)
- Same characteristics (constraints, protection, etc.) for all destinations

P2MP TE LSP Terminology

- Head-end/Source: Node where LSP signaling is initiated
- Mid-point: Transit node where LSP signaling is processed (not a headend, not a tail-end)
- Tail-end/Leaf/destination: node where LSP signaling ends
- Branch point: Node where packet replication is performed
- Source-to-leaf (S2L) sub-LSP:
 P2MP TE LSP segment that runs
 from source to one leaf

P2MP TE LSP Path Computation

- Constrained Shortest Path First (CSPF) used to compute an adequate tree
- CSPF executed per destination
- TE topology database and tunnel constraints used as input for path computation
- Path constraints may include loose, included, excluded hops
- Same constraints for all destinations (bandwidth, affinities, priorities, etc.)
- Path computation yields explicit path to each destination
- No changes to OSPF/IS-IS TE extensions
- Static paths possible with offline path computation

P2MP TE LSP Signaling

- Source sends unique PATH message per destination
- LFIB populated using RSVP labels allocated by RESV messages
- Multicast state built by reusing sub-LSP labels at branch points

P2MP TE LSP Traffic Selection IP Multicast

P2MP Tunnel	Multicast Group
Tunnel1	(192.168.5.1, 232.0.0.1)
	(192.168.5.1, 232.0.0.2)
Tunnel2	(192.168.5.1, 232.0.0.3)

- One or more IP multicast groups mapped to a Tunnel
- Groups mapped via static IGMP join
- PIM outside of MPLS network
- Modified egress RPF check against TE LSP and tunnel head end (source address)
- Egress node may abstract TE LSP as a virtual interface (LSPVIF) for RPF purposes

Configuring P2MP Tunnel at Head End (Cisco IOS)

Configuring RPF Check at P2MP Tunnel Tail End (Cisco IOS)

Apricot 2015

Configuring P2MP Tunnel at Head End (Cisco IOS XR)

Configuring RPF Check at P2MP Tunnel Tail End (Cisco IOS XR)

MPLS TE Integration with Network Services

A TE LSP provides transport for different network services

MPLS TE Deployment Models

Bandwidth optimization

Planned Bandwidth Optimization

- Tries to optimize underlying physical topology based on traffic matrix
- Key goal is to avoid link over/under utilization
- On-line (CSPF) or off-line path computation
- May result in a significant number of tunnels
- Should not increase your routing adjacencies

Traffic Matrix Measurement

- Interface counters on unconstrained tunnels
- Interface MIB
- MPLS LSR MIB
- NetFlow

NetFlow BGP Next Hop

MPLS-Aware NetFlow

Egress/Output NetFlow

BGP policy accounting

Communities

AS path

IP prefix

AutoTunnel Mesh

- Mesh group: LSRs to mesh automatically
- Membership identified by

Matching TE Router ID against ACL

IGP mesh-group advertisement

- Each member automatically creates tunnel upon detection of a member
- Tunnels instantiated from template
- Individual tunnels not displayed in router configuration

Auto Bandwidth

- Dynamically adjust bandwidth reservation based on measured traffic
- Optional minimum and maximum limits
- Sampling and resizing timers
- Tunnel resized to largest sample since last adjustment
- Actual resizing can be subject to adjustment threshold and overflow/underflow detection

Configuring AutoTunnel Mesh (Cisco IOS)

Configuring AutoTunnel Mesh (Cisco IOS XR)

Reactive Bandwidth Optimization

- Selective deployment of tunnels when highly-utilized links are identified
- Generally, deployed until next upgrade cycle alleviates congested links

TE for QoS

Motivations

- Point-to-point SLAs
- Admission control
- Integration with DiffServ architecture
- Increased routing control to improve network performance

MPLS TE and DiffServ Deployment Models

MPLS TE and no DiffServ

- A solution when:
 - No differentiation required

 Optimization required
- Limit link load to actual link capacity
- No notion of traffic classes

MPLS TE and DiffServ

- A solution when:
 - Differentiation required
 Optimization required
- Limit class capacity to expected class load
- Limit class load to actual class capacity for one class

DiffServ-Aware TE and DiffServ

- A solution when:
 - Strong differentiation required Fine optimization required
- Limit class capacity to expected class load
- Limit class load to actual class capacity for at least two classes

DiffServ-Aware Traffic Engineering

- Enables per-class traffic engineering
- IS-IS or OSPF flood link information (as usual)
- Per-class unreserved bandwidth on each link
- New RSVP object (CLASSTYPE)
- Nodes manages link bandwidth using a bandwidth constraint model
- Two models defined
 Maximum Allocation Model (MAM)
 Russian Doll Model (RDM)
- Unique class definition and constraint model throughout network
- Two classes (class-types) in current implementations

Maximum Allocation Model (MAM)

- BW pool applies to one class
- Sum of BW pools may exceed MRB
- Sum of total reserved BW may not exceed MRB
- Current implementation supports BC0 and BC1

Russian Dolls Model (RDM)

- BW pool applies to one or more classes
- Global BW pool (BC0) equals MRB
- BC0..BCn used for computing unreserved BW for class n
- Current implementation supports BC0 and BC1

Configuring DS-TE Classes and Bandwidth Constraints (Cisco IOS)

RDM

Configuring DS-TE Tunnel (Cisco IOS)

```
interface Tunnell
description FROM-ROUTER-TO-DST1-CT0
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 172,16,255,3
tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 5 5
tunnel mpls traffic-eng bandwidth 100000 class-type 0
tunnel mpls traffic-eng path-option 10 dynamic
interface Tunnel2
description FROM-ROUTER-TO-DST1-CT1
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 172,16,255,3
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 0 0
tunnel mpls traffic-eng bandwidth 50000 class-type 1
 tunnel mpls traffic-eng path-option 10 dynamic
```

Signal Tunnel1 with CT0 (priority and CT must match valid TE-Class)

Signal Tunnel2 with CT1 (priority and CT must match valid TE-Class)

Configuring DS-TE Classes and Bandwidth Constraints (Cisco IOS XR)

RDM

MAM

MAM bandwidth

Configuring DS-TE Tunnels (Cisco IOS XR)

Class-Based Tunnel Selection: CBTS

FIB	
Prefix1	Tunnel10
Prefix2	Tunnel20
Prefix3	Tunnel30

- EXP-based selection between multiple tunnels to same destination
- Local mechanism at head-end (no IGP extensions)
- Tunnel master bundles tunnel members
- Tunnel selection configured on tunnel master (auto-route, etc.)
- Bundle members configured with EXP values to carry
- Bundle members may be configured as default
- Supports VRF traffic, IP-to-MPLS and MPLS-to-MPLS switching paths

Policy-based Tunnel Selection: PBTS

FIB

Prefix1, exp 5	tunnel-te1
Prefix1, *	tunnel-te2
Prefix2, exp 5	tunnel-te3
Prefix2, exp 2	tunnel-te4
Prefix2, *	tunnel-te5
Prefix3, exp 5	tunnel-te6
Prefix3, *	tunnel-te7

- EXP-based selection between multiple tunnels to same destination
- Local mechanism athead-end
- Tunnels configured via policy-class or forwarding-class with EXP values to carry
- No IGP extensions
- Supports VRF traffic, IP-to-MPLS and MPLS-to-MPLS switching

Configuring CBTS (Cisco IOS)

Configuring PBTS (Cisco IOS XR)

Traffic Protection

Traffic Protection Using MPLS TE Fast Re-Route (FRR)

- Sub-second recovery against node/link failures
- Scalable 1:N protection
- Greater protection granularity
- Cost-effective alternative to 1:1 protection
- Bandwidth protection

Primary TE LSPBackup TE LSP

FRR Link Protection Operation

- Requires pre-signalled next-hop (NHOP) backup tunnel
- Point of Local Repair (PLR) swaps label and pushes backup label
- Backup terminates
 on Merge Point (MP) where traffic
 re-joins primary
- Restoration time expected under ~50 ms

FRR Node Protection Operation

- Requires pre-signalled next-nexthop (NNHOP) backup tunnel
- Point of Local Repair (PLR) swaps next-hop label and pushes backup label
- Backup terminates on Merge Point (MP) where traffic re-joins primary
- Restoration time depends on failure detection time

Configuring FRR (Cisco IOS)

Primary Tunnel

```
interface Tunnel1
description FROM-ROUTER-TO-DST1-FRR
ip unnumbered Loopback0
tunnel destination 172.16.255.2
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng bandwidth 20000
tunnel mpls traffic-eng path-option 10 dynamic

tunnel mpls traffic-eng fast-reroute
!
Indicate the desire for local protection
during signaling
```

Backup Tunnel

```
Explicitly routed
interface Tunnell
                                                                                    backup to
description NNHOP-BACKUP
ip unnumbered Loopback0
                                                                                     172.16.255.2 with
tunnel destination 172.16.255.2
                                                                                    zero bandwidth
tunnel mode mpls traffic-enq
tunnel mpls traffic-eng path-option 10 explicit name PATH1
                                                                                    Use Tunnel1 as
interface TenGigabitEthernet1/0/0
                                                                                    backup for protected
ip address 172.16.192.5 255.255.255.254
                                                                                    LSPs through
mpls traffic-eng tunnels
mpls traffic-eng backup-path Tunnel1
                                                                                     TenGigabitEthernet1/
ip rsvp bandwidth
                                                                                    0/0
```

© 2015 Cisco and/or its affiliates. All rights reserved.

Configuring FRR (Cisco IOS XR)

Primary Tunnel

Backup Tunnel

```
interface tunnel-te1
description NHOP-BACKUP
ipv4 unnumbered Loopback0
destination 172.16.255.130
path-option 10 explicit name PATH1

mpls traffic-eng
interface TenGigEO/0/0/0
backup-path tunnel-te 1

!

Use tunnel-te1 as backup
for protected LSPs
through TenGigEO/0/0/0

!
```

Bidirectional Forwarding Detection Trigger for FRR

- FRR relies on quick PLR failure detection
- Some failures may not produce loss of signal or alarms on a link
- BFD provides light-weight neighbor connectivity failure detection
- Preferred over RSVP Hellos

Bandwidth Protection

- Backup tunnel with associated bandwidth capacity
- Backup tunnel may or may not actually signal bandwidth
- PLR will decide best backup to protect primary

nhop/nnhop

backup-bw

class-type

node-protection flag

AutoTunnel: Primary Tunnels What's the Problem?

- FRR can protect TE Traffic
- No protection mechanism for IP or LDP traffic
- How to leverage FRR for all traffic?
- What if protection desired without traffic engineering?

—— Primary TE LSP

Backup TE LSP

AutoTunnel: Primary Tunnels What's the Solution?

Forward all traffic through a one-hop protected primary TE tunnel

Primary TE LSP

Create protected one-hop tunnels on all TE links

Priority 7/7

Bandwidth 0

Affinity 0x0/0xFFFF

Auto-BW OFF

Auto-Route ON

Fast-Reroute ON

Forwarding-Adj OFF

Load-Sharing OFF

- Tunnel interfaces not shown on router configuration
- Configure desired backup tunnels (manually or automatically)

AutoTunnel: Primary Tunnels Why One-Hop Tunnels?

- CSPF and SPF yield same results (absence of tunnel constraints)
- Auto-route forwards all traffic through one-hop tunnel
- Traffic logically mapped to tunnel but no label imposed (imp-null)
- traffic is forwarded as if no tunnel was in place

Configuring AutoTunnel Primary Tunnels (Cisco IOS)

Apricot 2015

AutoTunnel: Backup Tunnels What's the Problem?

- MPLS FRR requires backup tunnels to be preconfigured
- Automation of backup tunnels is desirable

AutoTunnel: Backup Tunnels What's the Solution?

Create backup tunnels automatically as needed

- Primary TE LSP
- Backup TE LSP

- Detect if a primary tunnel requires protection and is not protected
- Verify that a backup tunnel doesn't already exist
- Compute a backup path to NHOP and NNHOP excluding the protected facility
- Optionally, consider shared risk link groups during backup path computation
- Signal the backup tunnels

AutoTunnel: Backup Tunnels What's the Solution? (Cont.)

---- Primary TE LSP

Backup TE LSP

Backup tunnels are preconfigured

Priority 7/7

Bandwidth 0

Affinity 0x0/0xFFFF

Auto-BW OFF

Auto-Route OFF

Fast-Reroute OFF

Forwarding-Adj OFF

Load-Sharing OFF

 Backup tunnel interfaces and paths not shown on router configuration

Configuring AutoTunnel Backup Tunnels (Cisco IOS)

© 2015 Cisco and/or its affiliates. All rights reserved.

Configuring AutoTunnel Backup Tunnels (Cisco IOS XR)

Shared Risk Link Group (SRLG)

- Some links may share same physical resource (e.g. fiber, conduit)
- AutoTunnel Backup can force or prefer exclusion of SRLG to guarantee diversely routed backup tunnels
- IS-IS and OSPF flood SRLG membership as an additional link attribute

Configuring SRLG (Cisco IOS)

© 2015 Cisco and/or its affiliates. All rights reserved.

Configuring SRLG (Cisco IOS XR)

What About Path Protection?

- Primary and standby share head and tail, but expected to be diversely routed
- Generally higher restoration times compared to local protection
- Doubles number of TE LSPs (1:1 protection)
- May be an acceptable solution for restricted topologies (e.g. rings)
- Cisco IOS

Separate path option sequences for primary and standby

Explicit paths only

No path diversity

Cisco IOS XR

Single path-option sequence for primary and standby

Explicit and dynamic paths

Automatic path diversity (node-link, node, link)

Configuring Path Protection (Cisco IOS)

Configuring Enhanced Path Protection (Cisco IOS)

Configuring Path Protection (Cisco IOS XR)

```
interface tunnel-te1
  description FROM-ROUTER-TO-DST1
  ipv4 unnumbered Loopback0
  signalled-bandwidth 100000
  destination 172.16.255.2
  affinity f mask f

  path-protection
  path-option 10 explicit name PATH1
  path-option 20 explicit name PATH2
  path-option 30 dynamic
!
```

Signal an acceptable (node-link, node, link diverse) standby TE LSP based on pathoption sequence

P2MP TE LSP Traffic Protection

- No new protocol extensions to support FRR
- Protection requirement applies to all destinations
- P2P LSP as backup tunnel for a sub-LSP
- No changes to label stacking procedure
- Only link protection supported
- Head-end protection requires path redundancy (live-standby / live-live)

Backup TE LSP

Inter-Domain Traffic Engineering

Inter-Domain Traffic Engineering: Introduction

- Domain defined as an IGP area or autonomous system
- Head end lacks complete network topology to perform path computation in both cases
- Two path computation approaches
 - Per-domain (ERO loose-hop expansion)
 - Distributed (Path Computation Element)

Per-Domain Path Computation Using ERO Loose-hop Expansion

Configuring Inter-Area Tunnels (Cisco IOS)

```
mpls traffic-eng tunnels
                                                                               Loose-hop path
interface Tunnell
 ip unnumbered Loopback0
 no ip directed-broadcast
 tunnel destination 172.16.255.7
                                                                               Static route mapping
 tunnel mode mpls traffic-eng
                                                                               IP traffic to Tunnel1
 tunnel mpls traffic-eng path-option 10 explicit name LOOSE-PATH
ip route 172.16.255.7 255.255.255.255 Tunnel1
                                                                               List of ABRs as loose
ip explicit-path name LOOSE-PATH enable
                                                                               hops
 next-address loose 172.16.255.3
 next-address loose 172.16.255.5
```

Configuring Inter-Area Tunnels with Autoroute Destinations (Cisco IOS)

Configuring Inter-Area Tunnels (Cisco IOS XR)

Distributed Path Computation using Path Computation Element

© 2015 Cisco and/or its affiliates. All rights reserved.

80

Inter-Domain TE – Fast Re-route

- Same configuration as single domain scenario
- Support for node-id sub-object required to implement ABR/ASBR node protection
- Node-id helps point of local repair (PLR) detect a merge point (MP)

Inter-Domain TE Take into Account before Implementing

- Semantics of link attributes across domain boundaries
- Semantics of TE-Classes across domain boundaries for DS-TE
- Auto-route destinations creates a static route to tunnel destination and facilitates traffic selection
- Auto-route announce not applicable for traffic selection

General Deployment Considerations

Should RSVP-TE and LDP be Used Simultaneously?

- Guarantees forwarding of VPN traffic if a TE LSP fails
- May be required if full mesh of TE LSPs not in use
- Increased complexity

Apricot 2015

How Far should Tunnels Span?

PE-to-PE Tunnels

More granular control on traffic forwarding

Larger number of TE LSPs

P-to-P Tunnels

Requires IP tunnels or LDP over TE tunnels to carry VPN traffic (deeper label stack)

Fewer TE LSPs

May be extended with PE-P tunnels

MPLS TE on Link Bundles

 Different platforms support different link bundles

Ethernet

POS

Multilink PPP

- Bundles appear as single link in topology database
- Same rules for link state flooding
- LSP preemption if bundle bandwidth becomes insufficient
- Configurable minimum number of links to maintain bundle active
- Bundle failure can act as trigger for FRR

Scaling Signaling (Refresh Reduction)

- RSVP soft state needs to be refreshed periodically
- Refresh reduction extensions use message Identifier associated with Path/Resv state
- Summary Refresh (SRefresh) message refreshes state using a message_id list
- SRefresh only replaces refresh Path/Resv messages

Configuring Refresh Reduction (Cisco IOS)

```
mpls traffic-eng tunnels
interface TenGigabitEthernet0/1/0
 ip address 172.16.0.0 255.255.255.254
mpls traffic-eng tunnels
 ip rsvp bandwidth 100000
router ospf 100
 log-adjacency-changes
 passive-interface Loopback0
 network 172.16.0.0 0.0.255.255 area 0
 mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
ip rsvp signalling refresh reduction
```

Enable refresh reduction

^{*} Enabled by default in Cisco IOS XR

Summary

Summary

Technology Overview
 Explicit and constrained-based routing
 TE protocol extensions (OSPF, ISIS and RSVP)

© 2015 Cisco and/or its affiliates. All rights reserved.

P2P and P2MP TE LSP

- Bandwidth optimization
 Planned (full mesh, auto-tunnel)
 Reactive
- TE for QoS
 DS-TE (MAM, RDM)
 CBTS

- Traffic Protection
 Link/node protection (auto-tunnel)
 Bandwidth protection
- Inter-Domain Traffic Engineering
 Inter-Area
 Inter-AS (Authentication, policy control)
- General Deployment Considerations

MPLS TE and LDP

PE-to-PE vs. P-to-P tunnels

TE over Bundles

Scaling signaling

BUILT FOR THE HUMAN NETWORK CISCO