

Fast Convergence Mindset

- How Fast?
 - 200ms (or less)
 - 50ms SONET APS
- Do I Need It?
 - Complexity vs. Return
 - Business Drivers
 - Risks

BRKRST-3363

- More than timers
 - Processes
 - Monitoring
 - Applications
 - Everything Matters!

Fast Convergence Mindset

Not the same thing, but faster

Not just about routing protocols

Not just about failure recovery

Not just about one node

BRKRST-3363

Cisco Public

Measuring Convergence

Convergence =

Failure Detection + Event Propagation + Routing Process + FIB Update

Neighbor Down

Tell Neighbors

RIB + CEF + Hardware

- Failure Detection
 - What happened?

- Failure Detection
 - What happened?
- Event Propagation
 - Spread the word

- Failure Detection
 - What happened?

- Routing Process
 - Now where do we go?

- Event Propagation
 - Spread the word

- Failure Detection
 - What happened?

- Routing Process
 - Now where do we go?

- Event Propagation
 - Spread the word

- Failure Detection
 - What happened?
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

- Failure Detection
 - What happened?
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

- Failure Detection 0 to 150 ms
 - What happened?
- Event Propagation 0 to 10 ms
 - Spread the word

- Routing Process 10+ ms
 - Now where do we go?
- FIB Update 0 ms to 5+ minutes
 - Make it so

Agenda

- Thinking About Fast Convergence
- Reactive Convergence
 - Failure Detection
 - Detecting Link Failures
 - Fast Hellos and BFD
 - **Event Propagation**
 - Routing Update
 - Forwarding Table Update
 - **BGP** Convergence
- **Proactive Convergence**
- Closing Remarks

- Failure Detection
 - What happened?
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

- Failure Detection
 - What happened?
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Failure Detection

Detecting Link Failure

Link Failure -> Interface Down, Easy?

- Hardware Dependent
 - Polling vs Interrupt
 - 6748-GE-TX: 20ms/port * 48 ports = 960ms (polled)
 - Nexus 7k, ASR9k, 6708-10GE/ES/ES+: <10ms (interrupt)

Failure Detection

Detecting Link Failure

Link Failure -> Interface Down, Easy?

- Debounce Timer
 - Throttles down notification
 - Switches only

BRKRST-3363

Failure Detection

Detecting Link Failure

Link Failure -> Interface Down, Easy?

Detecting Link Failure

Debounce Timer

- Not Always Configurable
- Platform/Linecard/Media Dependent
 - -7600
 - 10ms on Fiber (10Gig)
 - 300ms Copper
 - NX-OS
 - 100ms
 - ASR9k
 - 0ms

BRKRST-3363

Recommendation: Leave unchanged

```
7600 (config) # interface ...
7600 (config-if) # link debounce time ...
```

Carrier Delay

- Generally Configurable
- Software Dependent
 - IOS/IOS-XE
 - 2 Seconds
 - NX-OS
 - 100ms (SVI Only)
 - XR/ASR9k
 - 0 ms
- Recommendation: 0 down, 2sec Up

```
7600(config) # interface ...
7600(config-if) # carrier-delay msec 0
7600(config-if) # carrier-delay up 2
```


Agenda

- Thinking About Fast Convergence
- Reactive Convergence
 - Failure Detection
 - Detecting Link Failures
 - Fast Hellos and BFD
 - **Event Propagation**
 - Routing Update
 - **BGP** Convergence
 - Forwarding Table Update
- **Proactive Convergence**
- Closing Remarks

BRKRST-3363

Detecting the Event

Fast Hellos

- Normal Hellos...but fast!
 - ~1 second detection
- Process Driven
- 1 Hello/Protocol
 - PIM, LDP, BGP, OSPF
- Handled by Central CPU
- 50+ Bytes

BFD

- Even Faster
 - -50ms x 3 = 150ms detection
- Interrupt Driven (like CEF)
- 1 Hello to Rule Them All
- Hardware Offload Possible
 - Nexus 7k, ASR 1k/9k, me3600-CX, 7600 ES+
- ~24 bytes

Detecting the Event

Fa Hellos

- No. ! Hellos. . . . fast!
 - − ~1 nd de ,on
- Process
- 1 Hello/
 - PIM OSPF
- Har d by Ce. CPU
- / Bytes

BFD

- Even Faster
 - -50ms x 3 = 150ms detection
- Interrupt Driven (like CEF)
- 1 Hello to Rule Them All
- Hardware Offload Possible
 - Nexus 7k, ASR 1k/9k, me3600-CX, 7600 ES+
- ~24 bytes

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Agenda Thinking About Fast Convergence Reactive Convergence Failure Detection Event Propagation Routing Update BGP Convergence Forwarding Table Update Proactive Convergence Closing Remarks

BRKRST-3363

Cisco Public

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Event Propagation in EIGRP

- The Good
 - Immediate event notification
- The Bad
 - Query Domain Size

Event Propagation in EIGRP

- The Good
 - Immediate event notification
- The Bad
 - Query Domain Size
- The Ugly
 - Stuck In Active

- Reduce Query Domains
 - Summary
 - Stub
 - Filters

- Reduce Query Domains
 - Summary
 - Stub
 - Filters

BRKRST-3363

Cisco Public

- Reduce Query Domains
 - Summary
 - Stub

BRKRST-3363

Filters

- Feasible Successors
 - Don't even ask!

- Reduce Query Domains
 - Summary
 - Stub
 - Filters

- Feasible Successors
 - Don't even ask!
 - No Query/Reply

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Improving OSPF Event Propagation

- LSAs Sent After Change
- Delay for Router/Network LSAs
 - XE: 5000ms
 - NX-OS: 200ms
 - XR: 50ms

```
XE-XR(config) #router ospf 10
XE-XR(config-router) #timers throttle lsa [all] <start> <hold> <max>
XE-XR(config-router) #timers lsa arrival <timer>
```

- Start: First LSA
- Hold: Repeat LSA (flap) (*2)
- Max: Maximum Wait Time

Improving OSPF Event Convergence

Wild Side

Start: 0ms

Hold: 20ms

Max: 5000ms

Nice and Easy

Start: 5ms

Hold: 40ms

Max: 10000ms

General theory for timer tuning

React immediately the first time, then wait significant periods of time for subsequent events

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (~0-5 ms)

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Improving ISIS Event Propagation

- Default LSP Generation 50ms (XE/XR/NX-OS)
- SPF runs on change
 - Can beat LSP Propagation

```
XE-NX(config) #router isis CLUS
XE-NX(config-router) #lsp-gen-interval <max> <initial>
XE-NX(config-router) #fast-flood
```

```
RP/0/RSP0/CPU0:XR# configure
RP/0/RSP0/CPU0:XR(config)# router isis CLUS
RP/0/RSP0/CPU0:XR(config-isis)# lsp-gen-interval initial-wait <time>
RP/0/RSP0/CPU0:XR(config-isis)# interface g0/3/0/0
RP/0/RSP0/CPU0:XR(config-isis-if)# lsp fast-flood threshold <num of LSPs>
```


Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (0-5 ms)
 - ISIS LSP Fast Flooding (1 ms)

- Routing Process
 - Now where do we go?
- FIB Update
 - Make it so

Agenda Thinking About Fast Convergence Reactive Convergence Failure Detection Event Propagation Routing Update BGP Convergence Forwarding Table Update Proactive Convergence Closing Remarks

Cisco Public

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (0-5 ms)
 - ISIS LSP Fast Flooding (1 ms)

- Routing Process
 - Now where do we go?

- FIB Update
 - Make it so

EIGRP Routing Update

- Based on DUAL Algorithm
- Runs when all Queries are answered
 - Doesn't run with Feasible Successors (no query!)
- Only calculates changed prefixes
 - Not much work compared to link-state protocols
 - DUAL can finish in < 1ms

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (0-5 ms)
 - ISIS LSP Fast Flooding (1 ms)

- Routing Process
 - Now where do we go?
 - EIGRP DUAL (<1 ms)
- FIB Update
 - Make it so

OSPF Routing Update

- SPF Run on LSA Reception
- Delayed by Default
 - XE: 5 seconds
 - NX-OS: 200ms
 - XR: 50ms

```
XE-XR (config) #router ospf 10
XE-XR(config-router) #timers throttle spf <start> <hold> <max>
```

- Start: First SPF run
- Hold: Repeat SPF run
- Max: Maximum Wait Time

Cisco Public

ISIS Routing Update

- SPF Run on LSP Reception
- Delayed by Default
 - XE: 10 seconds
 - NX-OS: 50ms
 - XR: 50ms

```
XE-XR(config) #router isis CLUS
XE-XR(config-router) #spf-interval <max> <start> <hold>
XE(config-router) #prc-interval <max> <start> <hold>
```

- Start: First SPF run
- Hold: Repeat SPF run
- Max: Maximum Wait Time

PRC and iSPF

- PRC Partial Route Calculation
 - Route change without topology change
 - No SPF run
 - Default in OSPF (Type 4/5)
 - ISIS
 - XE: extra configurable timer
 - NX-OS/ XR: baked in

- iSPF incremental SPF
 - Runs SPF shortcut
 - Only relevant to some network changes
 - Minor difference on modern platforms
 - Disabled by default
 - Not recommended*

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (0-5 ms)
 - ISIS LSP Fast Flooding (1 ms)

- Routing Process
 - Now where do we go?
 - EIGRP DUAL (<1 ms)</p>
 - ISIS/OSPF SPF (5ms)
- FIB Update
 - Make it so

59

Agenda Thinking About Fast Convergence Reactive Convergence Failure Detection Event Propagation Routing Update > BGP Convergence Forwarding Table Update Proactive Convergence Closing Remarks

BRKRST-3363

Cisco Public

BGP Fast Convergence Primer

- BGP != IGP
- Different Goals
- Lots of Data....
 -means lots of CPU
 -means lots of memory
 -means lots of packets
- BGP generally relies on IGP
- Little Events vs. Big Events
 - Route Flap vs. clear ip bgp *

Think about data plane over control plane

BGP Failure Detection

- Keepalives
 - 60/180s default
 - Don't tune (at least not aggressively)
- BFD
 - neighbor <> fall-over bfd
- Interface Tracking
 - Notifies BGP if interface/route down
 - Enabled by default

62

BGP Event Propagation

- MTU
 - Bigger packets
- BGP Based On TCP
 - MSS
 - Maximum amount of TCP data
 - Window Size
 - Local TCP buffer
 - ACKs reduce window as it fills
- Update Groups
 - Single policy update per group
 - More groups = more work

BGP Routing Update

- BGP Scanner
 - Old and Busted
 - The janitor of BGP
 - Runs every 60 seconds
- Next Hop Tracking
 - New Hotness
 - Event driven (3-5 sec delay)
 - IGP metric or path change

```
XE-NX(config)# router bgp 65535
XE-NX(config-router)# bgp nexthop trigger-delay <>
```

```
RP/0/RSP0/CPU0:XR# configure
RP/0/RSP0/CPU0:XR(config)# router bgp 65535
RP/0/RSP0/CPU0:XR(config-bgp)# address-family ipv4 unicast
RP/0/RSP0/CPU0:XR(config-bgp-af)# nexthop trigger-delay critical <> non-critical <>
```

BGP Routing Update – PIC Core

Flat RIB = slow convergence

- Before PIC
 - Update per route
 - Convergence dependent on BGP RIB size

67

BGP Routing Update – PIC Core

Instead of flat FIB, Hierarchical

68

BGP Routing Update – PIC Core

Instead of flat FIB, Hierarchical

- Single change updates multiple entries
- Convergence time independent from prefix count

7600(config) # cef table output-chain build favor convergence-speed

Agenda Thinking About Fast Convergence ➤ Reactive Convergence Failure Detection Event Propagation Routing Update BGP Convergence Forwarding Table Update Proactive Convergence Closing Remarks

Software CEF Updates

- Controlled by CPU + OS
- Supervisors Matter
- RIB Size Matters
- Summarize and Filter
 - XE: OSPF prefix suppression
 - XR/XE: ISIS advertise passive-only
- Process quantum
 - XE only
- Prefix Prioritization
 - Install /32s first

74

Hardware CEF Updates

- TCAM/SRAM Based Platforms
 - Fast Reads (linerate)
 - Sloogoow Writes
- Can be slowest piece to converge
 - 350k Routes ~27 seconds
 - 700k Routes ~360 seconds
- Hardware Matters!
- 7600:

```
7600 (config) #hw-module slot <mod> process-max-time 50
7600 (config) #hw-module slot <sup> sp process-max-time 50
```

Work Smarter, Not Harder!

79

Measuring Fast Convergence

- Failure Detection
 - What happened?
 - BFD (150 ms)
- Event Propagation
 - Spread the word
 - EIGRP Feasible Successors (~0 ms)
 - OSPF LSA Throttling (0-5 ms)
 - ISIS LSP Fast Flooding (1 ms)

- Routing Process
 - Now where do we go?
 - EIGRP DUAL (<1 ms)
 - ISIS/OSPF SPF (5ms)
- FIB Update
 - Make it so (1ms-5 min)

153ms – 5+ minutes

BRKRST-3363

Cisco Public

OSPF Loop Free Alternate

- A has a primary (A-C) and secondary (A-B-C) path to 10.1.1.0/24
- Link State allows A to know entire topology
- A should know that B is an alternative path
- Loop Free Alternate (LFA)

OSPF Loop Free Alternate

- OSPF presents a primary and backup to CEF
 - Backup calculated from secondary SPF run

```
RouterA# show ip route 10.1.1.0
Routing Descriptor Blocks:
 * 172.16.0.1, from 192.168.255.1, 00:01:57 ago, via Ethernet4/1/0
      Route metric is 2, traffic share count is 1
      Repair Path: 192.168.0.2, via Ethernet4/2/0
```

```
RouterA#show ip CEF 10.1.1.0
10.1.1.0/24
  nexthop 172.16.0.1 Ethernet4/1/0
    repair: attached-nexthop 192.168.0.2 Ethernet4/2/0
```


EIGRP LFA

```
RouterB#show ip route 172.16.2.0
Known via "eigrp 10", distance 90, metric 1100800, type
internal
  * 172.16.1.2, from 172.16.1.2, 00:00:17 ago, via Ethernet0/1
    Route metric is 281600, traffic share count is 1
    Repair Path: 192.168.1.1, via Ethernet0/0
```

```
RouterB#show ip cef 172.16.2.0
172.16.2.0/24
nexthop 172.16.1.2 Ethernet0/1
repair: attached-nexthop 192.168.1.1 Ethernet0/0
```


- Local node runs Secondary SPF from the point of view of the remote node
- Automatic MPLS TE Fast Reroute
- Use TE Tunnel to get between local and remote nodes
- Requires LDP in the ring

- rLFA Head End removes tunnel when converged
- Could converge faster than other nodes
- Keep Tunnel
- Delay install of routes to RIB
- Allows slower node to catch up
- Enabled automatically with rLFA

97

BRKRST-3363

Cisco Public

BGP PIC Edge – Node Protection

BGP PIC Edge – Link Protection

LDP Session Protection

- LDP is based on TCP
- IGP peers = LDP peers*
- Exchange Labels after IGP Convergence
 - Label per global prefix

LDP Session Protection

- LDP is based on TCP.
- IGP peers = LDP peers*
- Exchange Labels after IGP Convergence
 - Label per global prefix
- Link Failure requires label re-exchange
- No MPLS traffic without labels
- Session Protection creates targeted LDP Session

LDP Session Protection

- LDP is based on TCP
- IGP peers = LDP peers*
- Exchange Labels after IGP Convergence
 - Label per global prefix
- Link Failure requires label re-exchange
- No MPLS traffic without labels
- Session Protection creates targeted LDP Session
- Keep labels after failure if peer is still alive
- Immediately forward on IGP convergence

Other Considerations

- Punt Path
 - Path between interface and CPU
 - CoPP
 - Input Queue (IOS/IOS-XE)
 - General Packet Handling
 - ASR1k issues with jumbo MTU
- Neighbor Establishment Delays
 - OSPF DR / ISIS DIS
 - Use point-to-point interface
- Control Plane QoS
 - DSCP markings on egress control traffic
 - Does ingress QoS accommodate?

Final Thoughts

- Timers are just the beginning
- Everything matters
 - CPU, Hardware, Software, Latency, Operating System
- Fast Convergence is a tradeoff
- Think about both proactive and reactive convergence
- Consider network relationships and dependencies
 - Physical -> IGP -> BGP
- Culture of Engineering
 - Tolerance for false positive
 - Willing and able to work on hard problems

Recommended Sessions

- BRKARC-2350 IOS Routing Internals
- BRKDCT-2333 Data Center Network Failure Detection
- BRKRST-3371 Advances in BGP
- BRKRST-3007 Advanced Topics and Directions in Routing Protocols
- BRKARC-3472 NX-OS Routing Architecture and Best Practices
- BRKRST-2336 (EIGRP), 2337 (OSPF), 2338 (ISIS) Deployment in Modern Networks
- BRKRST-2041 WAN Architectures and Design Principles
- BRKRST-2042 Highly Available Wide Area Network Design
- BRKCRS-2031 Enterprise Campus Design: Multilayer Architectures and Design Principles
- BRKNMS-2518 Secrets to Achieving High Availability

#