

# Introduction Inter-AS L3VPN



# tending vriv services over inter-A5 tworks

- VPN Sites attached to different MPLS VPN Service Provide
- How do you distribute and share VPN routes between AS



#### I-A5 MPL5 VPNS Review

Distinguisher (RD) t IPv4 routes to VPNv4

Target allows VPN to be imported/ed to/from a VPN

E loopbacks are known

P protocol carries routes and inities using BGP s-families



### **MP-iBGP Update:**

**BGP VPN-IPv4** 

Net=RD:18.1/16

NH=PE1

**Route Target 100:1** 

**VPN Label=41** 

IP 40 P1

IP

# er-A5 vPN—Option A

## nnecting ASBRs using Back-to-Back VRFs



## -A5 VPN—Option B

## cting two ASBRs – Two Methods

distribute eBGP link into the IGP of both AS



ceiving PE-ASBRs be the next hop



## er-A5 vPN—Option B

blishing reachability between geographically dispersed VPN



v4 Prefixes/Labels from PEs Distributed to ASBRs

## er-A5 vPN—Option B

blishing reachability between geographically dispersed VPNs u Self on ASBRs

Virtual Routing Forwarding tables on ASBRs unless ASBR also supportionality (has VRF interfaces)

OS, Receiving PE-ASBR automatically creates a /32 host route to a ch must be advertised into receiving IGP if next-hop-self is not in operation to maintain the LSP

KR, must define a static route to the Next Hop of peer ASBR for Optiles (IPv4, IPv6, VPNv4, VPNv6). The CLI is obtained to the CLI is obtained as all address families (IPv4, IPv6, VPNv4, VPNv6). The CLI is obtained as all address families.

KR, must define route-policy to pass or filter selected VPNv4 routes and Option C as well as all address families (IPv4, IPv6, VPNv4, Version in Option B configuration example.

BR-ASBR link must be directly connected!!!!!! Could use

# AS VPN—Option B

end VPN packet forwarding - Next Hop Self on AS



\_3 are BGP VPN label.

## er-A5 vPN—Option B

to IOS ASBR eBGP configuration

```
eBGP for VPNv4
    ASBR1
     AS #1
                                                          AS #2
router bgp 1
neighbor <ASBR2> remote-as 2
neighbor <PE1> remote-as 1
neighbor <PE1> update-source loopback0
no bgp default route-target filter
address-family vpnv4
neighbor <PE1> remote-as 1 activate
neighbor <PE1> remote-as 1 next-hop-self
neighbor <ASBR2> remote-as 2 activate
neighbor <ASBR2> remote-as 2 send-community extended
```

re no han default route-target filter, command to store VPNv4 routes as it does not have

## -A5 VPN—Option B

## OS XR ASBR1 Configuration

eBGP for VPNv4



```
p 1
ivate
MPLS forwarding on ASBR!)
e <type & #>
ASBR-ASBR link!)
-family vpnv4 unicast
<ASBR2>
-as 2
-family vpnv4 unicast
e VPNv4 address family for ASBR)
olicy pass-all in
olicy pass-all out
orwarding of VPNv4 routes to other AS!)
```

```
neighbor <PE1>
 remote-as 1
 update-source loopback0
 address-family vpnv4 unicast
 next-hop-self
(!Set ASBR1 as next-hop-self!)
router static
 50.0.0.2/32 interface gig0/0/1
(!Static Route for ASBR-ASBR link
configured. It is not installed auto
IOS!)
```

icy pass-all

Note: Static route and route-policy required for

## er-A3 ven—Option C

## tihop eBGP VPNv4 Between RRs for better scale

Reflectors exchange VPNv4 routes

Exchange PE loopbacks (IPv4) with labels as these PNH addresses

tes LFIB duplication at ASBRs. ASBRs don't hold prefix/label info.

tions for Label Distribution for BGP NH Addresses for each domain:

GP IPv4 + Labels (RFC3107) – most preferred & ecommended

GP + LDP

change Label Advertisement Capability - Enables d LSP Paths

juent Address Family Identifier (SAFI value 4) field is indicate that the NLRI contains a label



## er-AS VPN—Option C

blishing reachability between VPNs



tore PE loopbacks & exchange labels for PE Loopback addresses

#### er-A5 vPN—Option C

## N packet forwarding



is a VPN label. L2 and L3 are IPv4 labels.

Outer Most Core (IGP Labels in an AS) Label Is not displayed in on this slide.

## er-A5 vPN—Option C

4+Label, Cisco IOS Configuration

```
ov4
activate
                                                  router bgp 1
send-label
                                                  neighbor <RR2> ebgp-multiho
                                                  address-family ipv4
                                                  neighbor <RR2> activate
                              ASBR1
          AS #1
                                                  neighbor <PE1> activate
                                                  neighbor <PE1> send-label
                                                  neighbor <ASBR1> activate
                                                  neighbor <ASBR1> send-label
ddress-family ipv4
eighbor <ASBR2> activate
                                                  address-family vpnv4
eighbor <ASBR2> send-label
                                                  neighbor <RR2> next-hop-unch
                                                  exit-address-family
eighbor <RR1> activate
aighhar < RR1> navt-han-salf
```

#### er-A5 vPN—Option C

# 4+Label, Cisco IOS XR Configuration



### er-A5 L3VPN Summary

- ree models: Option A, B, and C
- tion A is the most secured, least invasive. Support granular QoS.
- tion B, more scalable than Option-A for high numbers of VRFs. more adoptable vider corporations
- Less invasive than Option C, More invasive than Option A
- More scalable than Option-A if have high numbers of VRFs
- Use eBGP for ASBR peering
- ASBRs store VPNv4 routes and allocate labels for VPN prefixes
- tion C, most scalable, most invasive, mostly deployed in a single service provide work
- Use ASBRs to handle IPv4 PE loopbacks
- Route Reflectors exchange VPNv4 routes

# BUILT FOR THE HUMAN NETWORK CISCO