

Apache
& Virtual Hosts & mod_rewrite

Jonathan Brewer
Network Startup Resource Center

jon@nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

What is Apache?

Very good overview here:

 http://en.wikipedia.org/wiki/Apache_web_server

The Apache web site is also an excellent source of information:

 http://www.apache.org/

Quick Facts
 Initially released in 1995

 Used on around 250 million web sites

 Approximately 65% of all sites worldwide use Apache

 Runs on Unix, Linux, FreeBSD, Solaris, Netware, Mac OS X,
Windows, OS/2 and more.

 Licensed under the Apache License. Incompatible with GPL
version 2, compatible with version 3.

 Originally designed by Robert McCool who was involved with the
original web server, NCSA's HTTPd.

 Named “Apache” either because it involved many patches to the
original NCSA server, or after the American Indian Apache tribe.

What is a Virtual Host?

There are two types:
Name-based
 IP-based

We will be configuring named-based virtual hosts.

This allows a single IP address to serve many web sites
from a single server. This is possible because the web
client sends the name of the site it wishes to connect to
as part of its initial connection request.

Issues

Originally with HTTP/1.0 headers the hostname was
not required to be included. Some browsers, notably
Internet Explorer did not include the site name. This
caused name-based hosting to fail.

HTTP/1.1 released in 1999 requires the hostname to
be part of the header. So, this is no longer an issue.

SSL fails with name-based hosting as the hostname is
not part of the initial TLS/SSL handshake – thus you
cannot match the correct certificate to use for each site.
For some ssl virtual hosting tricks see:

http://wiki.apache.org/httpd/NameBasedSSLVHosts

IP-based Hosting

This requires a separate IP address for each hostname
on a web server.

 IP-based hosting works with current SSL
implementations.

 IP-based hosting (can) works even if DNS has failed.

However, requires an IP address for each site. This
may not be possible and requires more effort to
implement. IP addresses are running out.

Configuration Considerations: Apache

Directory naming conventions. Decide upon one from
the start:
 /usr/local/www/?? (FreeBSD)
 /var/www/?? (Linux)

What to do about default actions? We'll give an
example in our exercises.

Must deal with directory permissions in more detail.

Other Popular Apache Items

Three include:

 aliases
mod_rewrite
 htaccess

Aliases

Allows you to specify a web directory name that maps to a
separate directory outside the file structure of a web site.

For example:

Your site is http://www.example.com/

The site resides in /usr/local/www/share/default/, but
you want the files in /usr/local/www/books/ to be
available at http://www.example.com/books/

How would you do this?

Aliases continued
In the file httpd.conf...

Alias /books /usr/local/www/books

You must set Directory permissions as well.

<Directory “/usr/local/www/books”>
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Remember, case counts in Apache configuration files!

mod_rewrite
Allows you to redirect requests from a page, or a pattern

of pages to another page, or another pattern of pages.

Extremely powerful
Uses regular expression language
Can save you if you move a large number of pages

In order to use mod_rewrite the rewrite module must
be part of your Apache install and it must be loaded:

/etc/apache2/mods-enabled/rewrite.load
a2enmod rewrite
server apache2 restart

mod_rewrite continued
Here is some sample code where mod_rewrite is
actually used (from sites/000-default):

turn on the use of the mod_rewrite module
 RewriteEngine on

trac logins must be secure
 RewriteCond %{SERVER_PORT} !443
 RewriteCond %{REQUEST_URI} ^/trac
 RewriteRule ^(.*)$ https://nsrc.org$1 [R=301]

Forces all users viewing wiki pages to do so using https
(SSL), including logins. Very commonly used.

[R=301]  Apache Redirect Response

htaccess
1. Use mod_rewrite to force https for any directory
2. Use htaccess to require a password.

Create a file “.htaccess” in the directory you wish to protect.
In that file you might have something like this:

AuthName ”My Personal Photos"
AuthType Basic
AuthUserFile /home/user/public_html/photos/.htpasswd
require user sebastian

Note the file “.htpasswd” above. This is where you store
user/password information. You do this by running and
using the htpasswd command.

htpasswd command
To create an initial .htpasswd file with a user and password
you do:

 # htpasswd -c .htpasswd username

The “-c” parameter says to create the file. Enter in the
password when prompted. For the next user do:

 # htpasswd .htpasswd username

To change a password just run the command again.

And, in the end you'll see a prompt like this...

htaccess

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	htaccess

