

Webinar: Advanced RIPE Atlas Usage

Vesna Manojlovic Christopher Amin

RIPE NCC

Goals

- Learn how to:
 - Use RIPE Atlas measurements for network monitoring and troubleshooting
 - Use API calls to create measurements
 - Integrate RIPE Atlas with existing monitoring systems
- Opportunity for hands-on practice
- Get your questions answered by developers

Prerequisites

We assume you have already used RIPE Atlas

- Do you have a RIPE NCC Access account?
 - If not quickly create one: <u>ripe.net/register</u>
- Do you have credits to spend?
 - If not tell us your account in the chat window

 Who prefers using the graphical interface to schedule a measurement in RIPE Atlas?

Who prefers RIPE Atlas API?

Overview

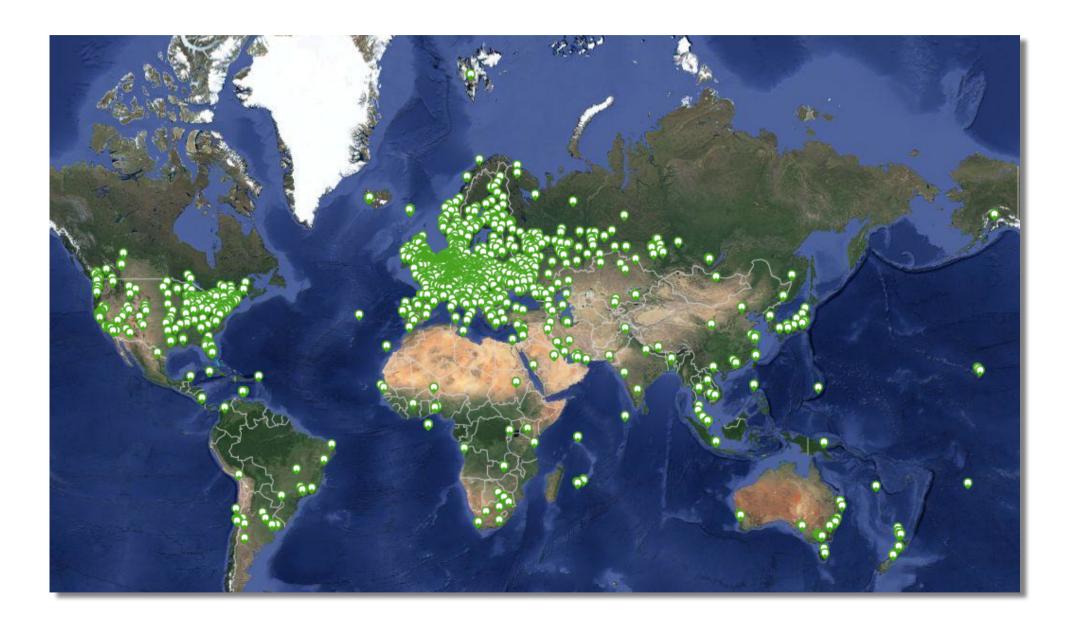
Introduction to RIPE Atlas

- Creating measurements
- Integration with network monitoring systems
- Real-time performance monitoring
- Take part in the RIPE Atlas community

Additional slides

3:10ff 198 f0f 198.51

Introduction to RIPE Atlas


RIPE Atlas is a global active measurements platform

Goal: view Internet reachability

Probes hosted by volunteers

Data publicly available

- Ongoing global measurements towards root nameservers
 - Visualised as Internet traffic maps

Ongoing regional measurements towards "anchors"

- Users can run customised measurements
 - ping, traceroute, DNS, SSL/TLS and NTP

• 8,400+ probes connected

- 5,000+ active users in the last quarter
- 2,500+ results collected per second
- 35,000+ customised measurements weekly

3:10ff 198 b8:bf98:3080 f0f 198.51

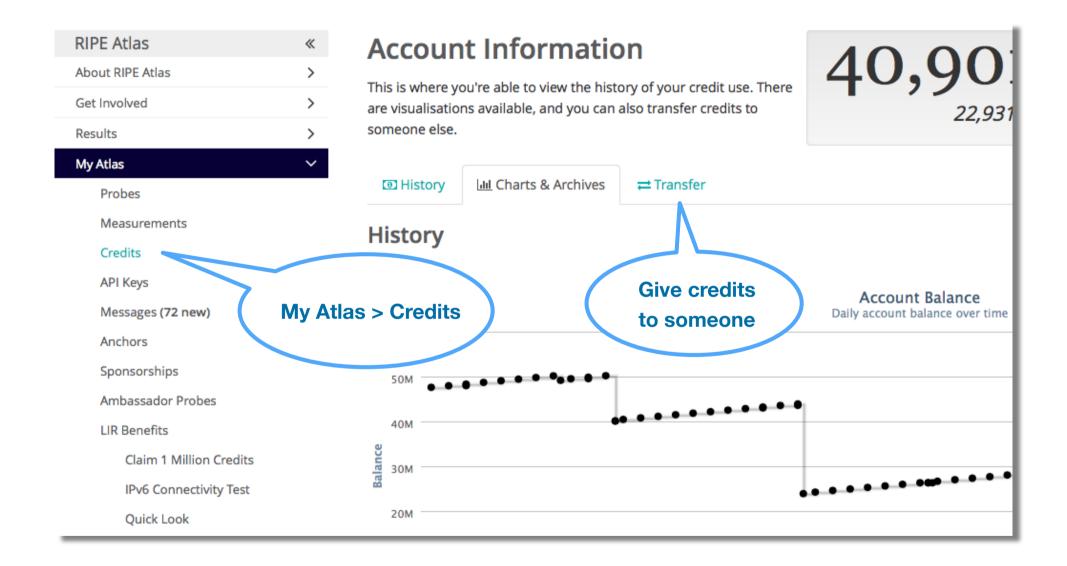
Creating a Measurement

Benefits of your own measurements

- A customer reports a problem: they cannot reach one of your servers
 - You can schedule pings or traceroutes from up to 500
 RIPE Atlas probes from a particular region to check where the problem might be

Measuring packet loss on a suspected "bad" link

Testing anycast deployment



Credit system

- Running your own measurements cost credits
 - ping = 10 credits, traceroute = 20, etc.
- Why? Fairness and to avoid overload
- Daily spending limit & max measurements user can create

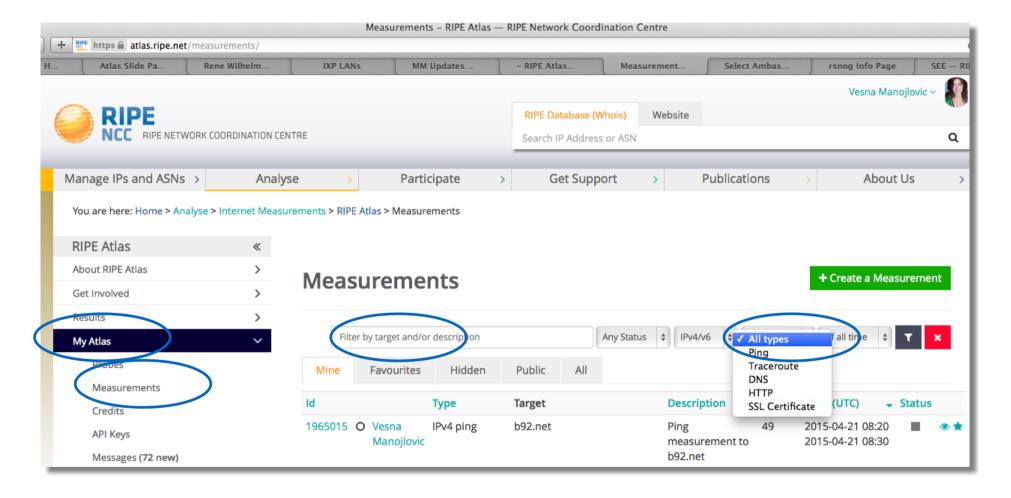
- Hosting a RIPE Atlas probe earns credits
- Earn extra credits by:
 - Being a RIPE NCC member
 - Hosting an anchor
 - Sponsoring probes

- Log in to <u>atlas.ripe.net</u>
- "My Atlas" > "Measurements"

- Three methods:
 - 1. Quick & Easy
 - Type
 - Target
 - Done! (default values are used…)
 - 2. Advanced GIU usage
 - 3. CLI scripting using API

- Mostly a periodic, long time measurement
 - If just once, ASAP, choose "One-off"
- Choose type, target, frequency, # of probes, region...
 - Improved interactive interface helps you at each step

You will spend credits

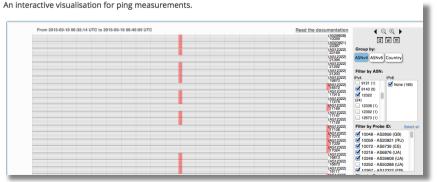


- Using command-line & scripting:
 Application Programming Interface (API)
 - https://atlas.ripe.net/docs/measurement-creation-api/
 - https://atlas.ripe.net/keys/
- You will need API keys
 - To create measurements without logging in
 - To securely share your measurement data

Looking up measurements results

Go to "My Atlas" > "Measurements"

Available visualisations: ping

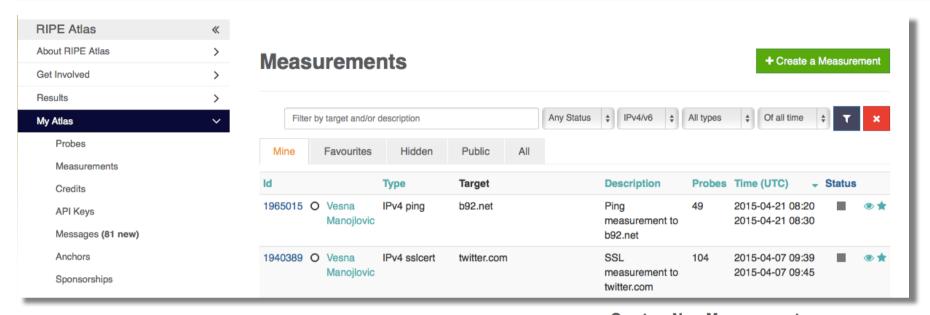

 List of probes: sortable by RTT

Map: colour-coded by RTT

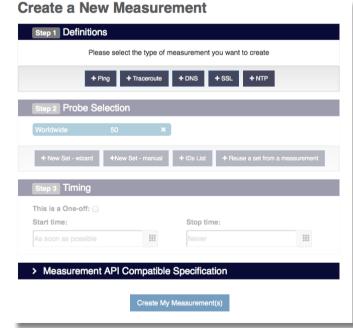
 Seismograph: stacked multiple pings with packet loss

3:10ff 198 b8:bf98:3080 f0f 198.51

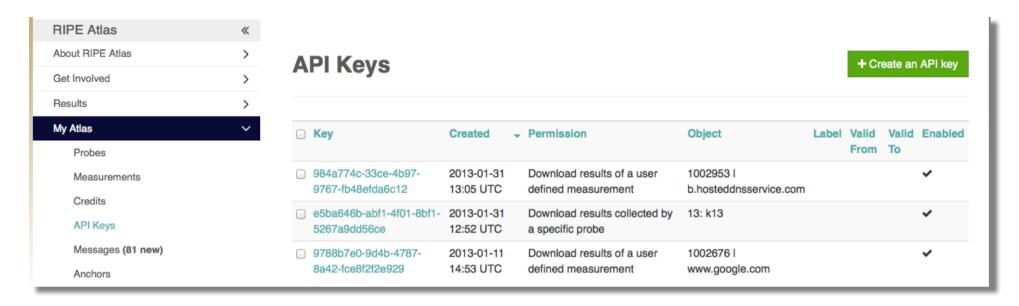
Exercise: Create a Measurement


Tasks

- Create a ping measurement:
 - Involving ten probes
 - To a target of your choice
 - Source is your country
 - Duration of two days


- 1. Warm-up: Create a measurement using the GUI
- 2. Create API Key
- 3. Schedule a measurement using the API

Sub-task 1: Use web interface



- Useful hint: once you generate a measurement, copy "API Compatible Specification" to text file
- Note MSM-ID, too

Sub-task 2: Create API key

- Click on "Create an API Key"
- Choose type: "create a new user-defined measurement"
- "Object" is not applicable (N/A) for this type
- Give it a label
- Give it a duration of validity (leave empty for defaults)
- "Key" value to be passed on to the API call (next step)

- Schedule a measurement using API
 - Use the "key" you just generated
 - Hint: copy and past API call syntax from the measurement generated by the GUI

Example:

```
$ curl -H "Content-Type: application/json" -H "Accept: application/json" -X
POST -d '{ "definitions": [ { "target": "ripe.net", "description": "My First
Measurement", "type": "ping", "af": 4 } ], "probes": [ { "requested": 10,
    "type": "country", "value": "RS" } ] }' https://atlas.ripe.net/api/v1/
measurement/?key=YOUR API_KEY
```


FOF 198.5

Integration of RIPE Atlas with Network Monitoring Systems

Network monitoring

 Network operators use tools for monitoring network health (e.g. Nagios and Icinga)

 These tools can receive input from RIPE Atlas via the API

Benefits:

- pings from 500 out of 8,000+ probes around the world
- See your network from the outside
- Plug into your existing practices

1. Create a RIPE Atlas ping measurement

2. Go to "Status Checks" URL

3. Add your alerts in Nagios or Icinga

- Status checks work via RIPE Atlas' RESTful API
 - https://atlas.ripe.net/api/v1/status-checks/
 MEASUREMENT ID/
- You define the alert parameters, for example:
 - Threshold for percentage of probes that successfully received a reply
 - How many of the most recent measurements to base it on
 - The maximum packet loss acceptable
- Documentation:
 - https://atlas.ripe.net/docs/status-checks/

- Community of operators contributed configuration code!
 - Making use of the built-in "check_http" plugin
- GitHub examples:
 - https://github.com/RIPE-Atlas-Community/ripe-atlascommunity-contrib/blob/master/ scripts for nagios icinga alerts
- Post on Icinga blog:
 - https://www.icinga.org/2014/03/05/monitoring-ripe-atlas-status-with-icinga-2/

3:10ff 198 FOF 198.51

Exercise: Setting up "Status Checks"

- Set up and configure a "status check"
 - For an existing ping measurement https://atlas.ripe.net/ measurements/2340408/
 - Hint: https://atlas.ripe.net/api/v1/status-checks/2340408/

 Configure the status check in such a way that you will trigger an alert for this measurement

 Optional: set-up status check for your own ping measurement!

Solution

One possible solution:

- Set the median RTT to a lower level:
- https://atlas.ripe.net/api/v1/status-checks/1004005/?median_rtt_threshold=10

Example of the alerts

```
{"total_alerts":32,"global_alert":true,
"probes":{
"18433":{"all":[null,null],"last":null,"last_packet_loss":100.0,"alert":true,"source":"Area: WW","alert_reasons":["loss"]},
"15041":{"source":"Area: WW","last_packet_loss":0.0,"last":19.928,"alert":false},
"18696":{"all":[null,null,null],"last":null,"last_packet_loss":100.0,"alert":true,"source":"Area: WW","alert_reasons":["loss"]},
"16265":{"source":"Area: WW","last_packet_loss":0.0,"last":22.72,"alert":false},
"20236":{"all":[null,null,null],"last":null,"last_packet_loss":100.0,"alert":true,"source":"Area: WW","alert_reasons":["loss"]},
"12944":{"all":[null,null,null],"last":null,"last_packet_loss":100.0,"alert":true,"source":"Area: WW","alert_reasons":["loss"]},
"2195":{"all":[null,null],"last":null,"last_packet_loss":100.0,"alert":true,"source":"Area: WW","alert_reasons":["loss"]},
```

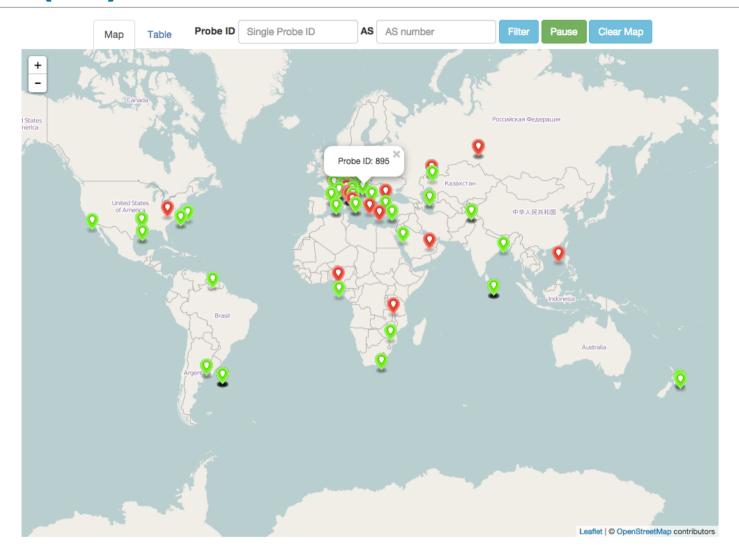

FOF 198.5

Real-time performance monitoring

- RIPE Atlas streaming is an architecture that allows users to receive the measurement results as soon as they are sent by the probes - in real time
 - Publish/subscribe through web sockets

- There are two types of data:
 - Measurement results
 - Probe connection status events

Real-time streaming uses


- Visualising network outages
- Server and performance monitoring

• In March 2015: used by almost all hackathon teams: https://labs.ripe.net/Members/becha/ripe-atlas-hackathon-results

- Documentation:
 - https://atlas.ripe.net/docs/result-streaming/
 - https://labs.ripe.net/Members/suzanne taylor muzzin/datastreaming-in-ripe-atlas

Probe (dis)connection events

https://labs.ripe.net/Members/andreas strikos/amsterdam-power-outageas-seen-by-ripe-atlas

3:10ff 198 FOF 198.5

Exercise: Using streaming API

Exercise: Monitoring server reachability

- Scenario: customers are complaining that it occasionally takes a long time to reach your service or server
- Action: ping your server from 500 probes
 - Decide what is acceptable latency threshold to apply
 - Notice and react when you start receiving samples

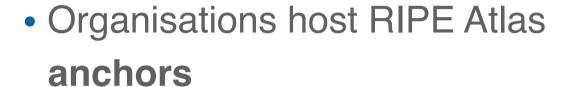
- Task: Use the ping measurement ID1791207
 - Choose which threshold (e.g. greater than 30ms)
 - Imposes the threshold on "min" (the minimum result of the three ping attempts)

Steps

- 1. Go to https://stat.ripe.net/widgets/workshops/ webinar/ripe-atlas/streaming-01.html
- 2. Open the development console
- 3. Wait for results to arrive
- 4. Optional: Save the HTML file locally and edit the code to your liking

Example of results

```
Q | Elements Network Sources Timeline Profiles Resources Audits Console AngularJS
▼ ■ Preserve log
              Regex
                               Errors Warnings Info Logs Debug
Filter
                                                                       ☐ Hide network messages
  XHR finished loading: GET "http://atlas-stream.ripe.net/stream/socket.io/?EIO=2&transport=polling&t=1431095373684-0".
  XHR finished loading: GET "http://atlas-stream.ripe.net/stream/socket.io/?EIO=2&transport=polling&t=1431095373739-1&sid=eB0kM7zfWFT2c-ScAAaH".
  I received ▶ Object {af: 4, prb_id: 16669, result: Array[3], ttl: 42, avg: 326.841...}
  I received ▶ Object {af: 4, prb_id: 16669, result: Array[3], ttl: 42, avg: 325.79333333333...}
  I received ▶ Object {af: 4, prb_id: 16669, result: Array[3], ttl: 42, avg: 326.048...}
  I received ▶ Object {af: 4, prb id: 16669, result: Array[3], ttl: 42, avg: 327.3253333333...}
  I received ▶ Object {af: 4, prb_id: 15965, result: Array[3], ttl: 45, avg: 47.6313333333...}
  I received ▶ Object {af: 4, prb_id: 15965, result: Array[3], ttl: 45, avg: 47.6996666667...}
  I received ▶ Object {af: 4, prb_id: 15965, result: Array[3], ttl: 45, avg: 47.4816666667...}
  I received ▶ Object {af: 4, prb_id: 19566, result: Array[3], ttl: 40, avg: 47.054...}
  I received ▶ Object {af: 4, prb_id: 19566, result: Array[3], ttl: 40, avg: 47.8626666667...}
  I received ▶ Object {af: 4, prb_id: 19566, result: Array[3], ttl: 40, avg: 47.5946666667...}
  I received ▶ Object {af: 4, prb id: 19566, result: Array[3], ttl: 40, avg: 47.5003333333...}
  I received ▶ Object {af: 4, prb id: 18311, result: Array[3], ttl: 49, avg: 32.577...}
  I received ▶ Object {af: 4, prb_id: 18311, result: Array[3], ttl: 49, avg: 34.0843333333...}
  I received ▶ Object {af: 4, prb_id: 18311, result: Array[3], ttl: 49, avq: 32.75133333333...}
  I received ▶ Object {af: 4, prb_id: 16010, result: Array[3], ttl: 46, avg: 182.4463333333...}
  I received ▶ Object {af: 4, prb_id: 16010, result: Array[3], ttl: 46, avg: 193.9953333333...}
  I received ▶ Object {af: 4, prb_id: 16010, result: Array[3], ttl: 46, avg: 182.2913333333...}
  I received ▶ Object {af: 4, prb_id: 16010, result: Array[3], ttl: 46, avg: 191.61033333333...}
  I received ▶ Object {af: 4, prb id: 14918, result: Array[3], ttl: 49, avg: 34.817...}
  I received ▶ Object {af: 4, prb_id: 14918, result: Array[3], ttl: 49, avg: 35.0093333333...}
  I received ▶ Object {af: 4, prb_id: 14918, result: Array[3], ttl: 49, avg: 35.0843333333...}
  I received ▶ Object {af: 4, prb_id: 20668, result: Array[3], ttl: 45, avg: 38.884666667...}
  I received ▶ Object {af: 4, prb_id: 20668, result: Array[3], ttl: 45, avg: 38.8626666667...}
  I received ▶ Object {af: 4, prb_id: 20668, result: Array[3], ttl: 45, avg: 38.8806666667...}
  I received ▶ Object {af: 4, prb_id: 6093, result: Array[3], ttl: 49, avg: 128.7273333333...}
  I received ▶ Object {af: 4, prb_id: 6093, result: Array[3], ttl: 49, avg: 128.7373333333...}
  I received ▶ Object {af: 4, prb_id: 6093, result: Array[3], ttl: 49, avg: 128.8883333333...}
```



FOF 198.5

Take part in the RIPE Atlas community

RIPE Atlas community (part 1)

Individual volunteers host
 probes in homes or offices

 Sponsor organisations give financial support or host multiple probes in their own networks

RIPE Atlas community (part 2)

- Ambassadors help distribute probes at conferences, give presentations, etc.
- Developers contribute free and open software
- Network operators create measurements to monitor and troubleshoot
- Researchers and students
 write papers

https://atlas.ripe.net & http://roadmap.ripe.net/ripe-atlas/

Users' mailing list: ripe-atlas@ripe.net

Articles and updates: https://labs.ripe.net/atlas

Questions and bugs: <u>atlas@ripe.net</u>

Twitter: @RIPE_Atlas and #RIPEAtlas

I 44

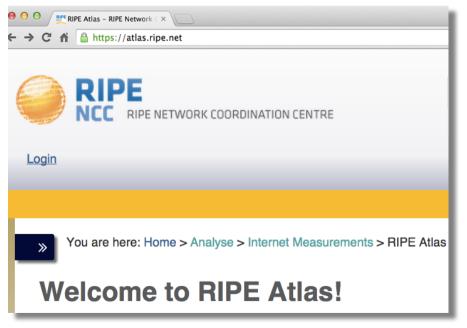
03:10ff 198 f0f 198.5)

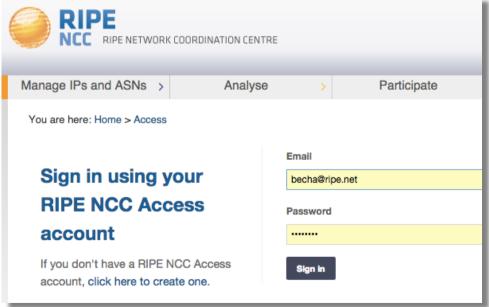
Additional slides

3:10ff 198 FOF 198.5

Finding Results of Public Measurements

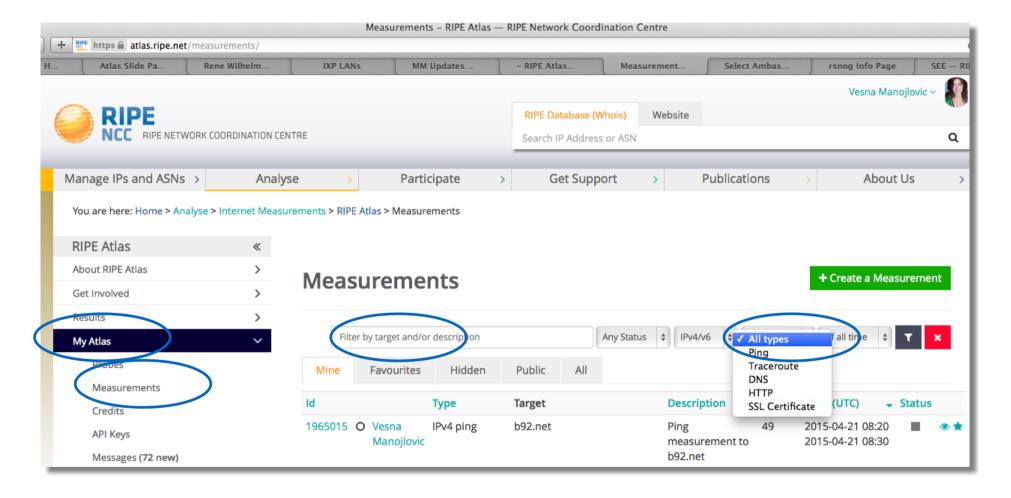
There are many measurements already running!


Search for existing public measurements first


 Schedule your own measurement if you don't find what you're looking for

Logging in

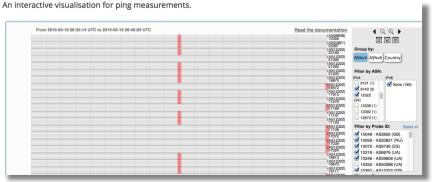
- Log in to <u>atlas.ripe.net</u>
 - Use your RIPE NCC Access account
 - Same account for LIR Portal, RIPE Atlas, RIPEstat, RIPE Labs...
 - Create an account if you don't have one already

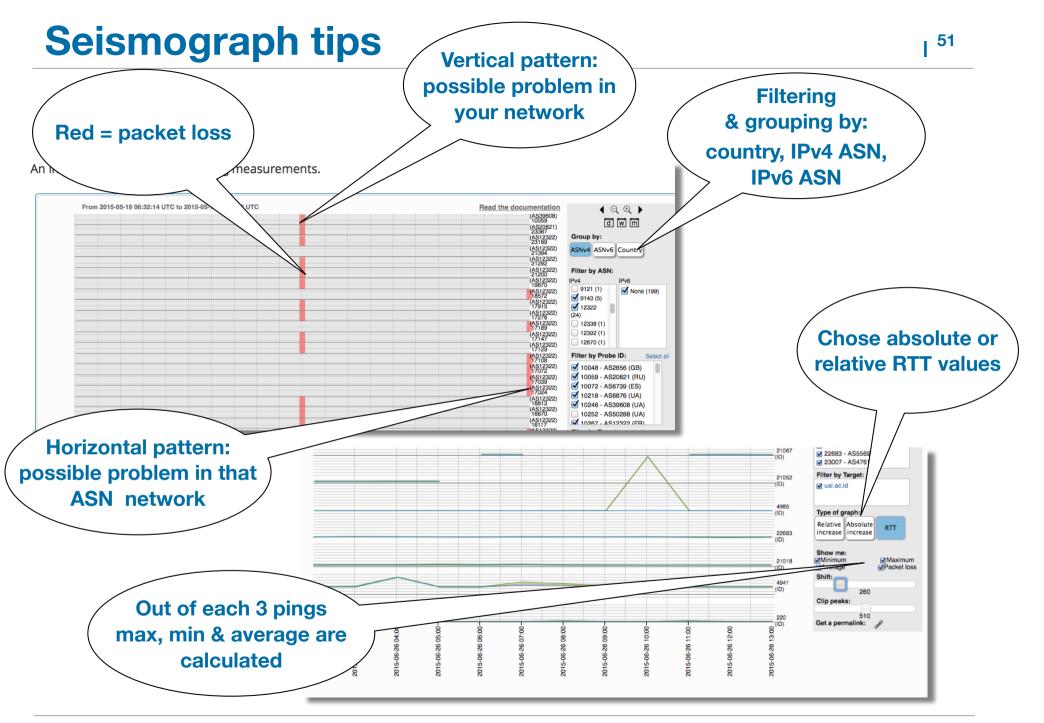


Looking up measurements results

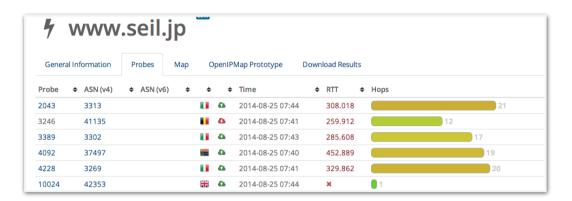
Go to "My Atlas" > "Measurements"

Available visualisations: ping


 List of probes: sortable by RTT


Map: colour-coded by RTT

 Seismograph: stacked multiple pings with packet loss



Available visualisations: traceroute

List of probes, colour-coded number of hops

Map

 Traceroute paths map, geolocation using OpenIPMap: https://github.com/RIPE-Atlas-Community/openipmap

Map, colour-coded response time or diversity

List of probes, sortable by response time

DNS measurement to ns1.opteamax.de General Information **Download Results** Modification Log Probe **♦ Time** ASN (v6) Name Response Time 17840 6327 2015-05-19 09:38 null 18035 43030 2015-05-19 09:50 null 18129 327805 2015-05-19 09:49 null 15844 32098 2015-05-19 09:48 null 17857 852 2015-05-19 09:37 null 19894 6327 2015-05-19 09:36 null 19204 21513 2015-05-19 09:50 null 15922 30036 2015-05-19 09:47 null

- Documentation for analysing measurements results:
 - https://atlas.ripe.net/docs/rest/
 - https://github.com/RIPE-NCC/ripe.atlas.sagan

- More tools:
 - https://github.com/RIPE-Atlas-Community
 - https://github.com/RIPE-Atlas-Community/ripe-atlascommunity-contrib/blob/master/README.md

3:10ff 198 b8:bf98:308 fOf 198.5)

Exercise: Analyse Measurement Results

Tasks

Download results of a specific public measurement

Read the text of the result, to understand structure

- Find the measurement
 - ping, IPv6 to google.com
 - msm-ID 1004005

- Click on measurement, then "Download"
 - Specify the time period
 - (for example, YESTERDAY)
- Results in JSON

Tips for downloading results

- Solution URL:
 - https://atlas.ripe.net/api/v1/measurement/1004005/result/? start=1435104000&stop=1435276799&format=json

Save the measurement(s) locally

```
$ curl https://atlas.ripe.net/api/v1/
measurement/1004005/result/?
start=1435104000&stop=1435276799&format=json >
measurement-test.json
```


Destination

```
(IP & name)
[{"af":6, "avg" 61.32,
"dst addr": "2a00:1450:4004:802::1014", "dst name": "www.google.com",
"dup":0,
"from": "2001:8a0:7f00:b201:220:4aff:fec5:5b5b",
"fw":4660,"lts":411,
                                        Source (probe
                                                              Packet
"max":62.148, "min":60.372,
                                       public IP address)
                                                           loss: difference
                                                           between sent &
"msm id":1004005, "msm name": "Ping",
                                                             received!
"prb id":722, "proto": "ICMP", "rcvd":10
"result":[{"rtt":62.148},{"rtt":61.437},{"rtt":61.444},{"rtt":61.448}
{"rtt":61.794}, {"rtt":61.533}, {"rtt":60.372}, {"rtt":60.373}, {"rtt":
61.384},{"rtt":61.267}],
"sent":10, "size"64,
"src addr": "2001:8a0:7f00:b201:220:4aff:fec5:5b5b",
"step":240, "timestamp":1410220847, "ttl":54, "type": "ping"}
```


Reference

(msm ID)

Task 3: analyse results (optional)

- Find out how many times RTT was above 60ms
 - Use Python o Javascript or something else

- For the Javascript solution, you can use this as a starting point:
 - https://stat.ripe.net/widgets/demo/script_me.html

Task 3: Examples of code

Python:

Parse json and find total avg:

```
import json
f = open("measurement.json","r")
measurements = json.load(f)
for m in measurements:
    for r in m["result"]:
        rtt = r["rtt"]
ifrtt >60: i += 1
i must be > than 14563.
```

Javascript:

```
<script>
var dataAPIUrl = "https://atlas.ripe.net/api/v1/
measurement/1004005/result/?start=1410220800";
¡Query.ajax({
url: dataAPIUrl, error: function() {
alert("error"); },
success: function( response ) { var i = 0;
for (var i = 0, n = response.length; <math>i < n; i++) { var
measurement = response[i];
for (var j = 0, m = measurement.result.length; <math>j < m; j++) {
var rtt = measurement.result[i].rtt;
console.log(rtt);
if (rtt > 60)
i++; }
¡Query("p").html("The RTT has been above 60ms for " + i
+ " times");
dataType: "isonp" });
</script>
```


03:10ff 198 f0f 198.5)

RIPE Atlas Anchors

- Well-known targets and powerful probes
 - Regional baseline and "future history"

- Each probe measures 4-5 anchors
- Vantage points for DNSMON service

• 130+ RIPE Atlas anchors

https://atlas.ripe.net/results/maps/network-coverage/ #anchors

Measuring Impact of IXPs on Keeping Traffic Local

"IXP Country Jedi"

Benefits (part 1)

- Operators
 - Routing and traffic optimisation
- IXP operators
 - Shows how IXPs help keep traffic local and regional
- IPv6 advocates
 - Comparing IPv4 and IPv6 paths
- Country level: regulators, politicians, cyber-security...
 - How much traffic stays within the country? Where do the paths go?
 - Comparing countries with each other

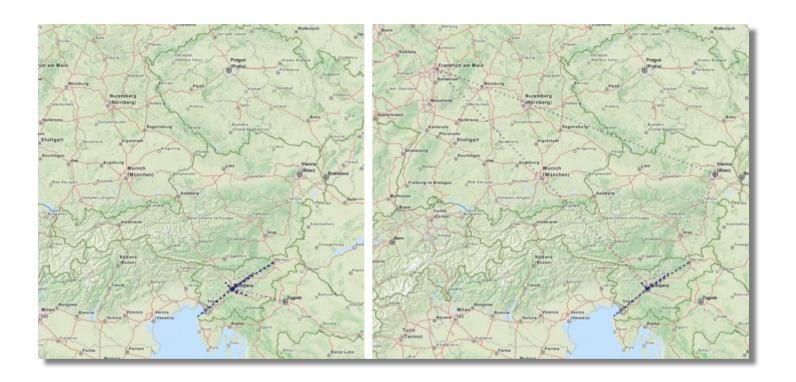
Benefits (part 2)

RIPE Atlas community

 More probes in more networks = higher quality of measurements data

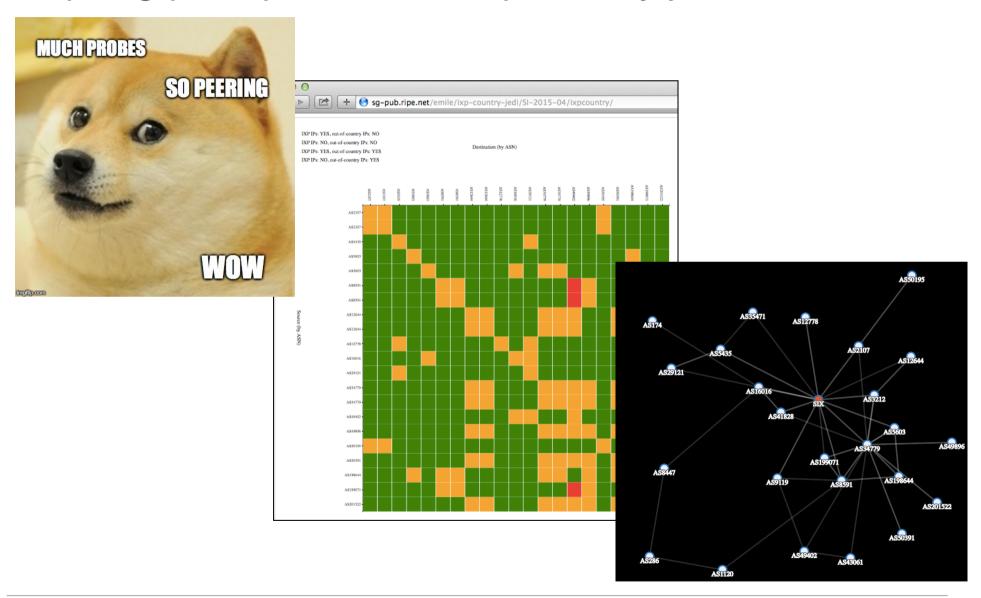
Geolocation data community

- Use case for improving data quality

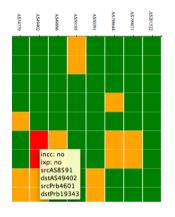

Examples:

- https://labs.ripe.net/Members/emileaben/measuring-ixpswith-ripe-atlas
- https://labs.ripe.net/Members/emileaben/measuringcountries-and-ixps-in-the-see-region
- http://sg-pub.ripe.net/emile/ixp-country-jedi/CL +AR-2015-04/geopath/

Paths staying in the country?


Difference between IPv4 and IPv6 paths

http://sg-pub.ripe.net/emile/ixp-country-jedi/**SI**-2015-04/geopath/s/**SI**/{RO, BG, HR, BA, ME, AL, GR}/


http://sg-pub.ripe.net/emile/ixp-country-jedi/SI-2015-04/

Interactive diagnostic tool

http://sg-pub.ripe.net/emile/ixpcountry-jedi/SI-2015-04/ixpcountry/


```
## msm_id:1962254 prb_id:4601 dst:193.169.48.40 ts:2015-04-16 09:01:06 -00:00 1 (As8591) maribor10-ge-2-20-v987.amis.net [1.593, 1.602, 2.292] |Maribor,Maribor,SI 2 (As8591) mx-mbl-te-1-2-0.amis.net [1.619, 1.697, 1.944] || 3 (As8591) mx-ljl-te-2-3-1.amis.net [3.599, 3.865, 5.148] || 4 (As8591) mx-gjl-xe-2-0-1.amis.net [5.568, 5.576, 5.69] || 5 () 75.64-127.15.192.193.in-addr.arpa [5.955, 5.98, 5.985] |Zagreb,Grad Zagreb,HR| 6 (AS9119) 212.13.240.249 [5.778, 5.83, 5.935] || 7 (As9119) 212.13.240.249 [5.778, 5.83, 7.926] || 8 (AS9119) 121.31.3240.62 [6.597, 7.674, 7.696] || 9 (AS9119) hsl.gw0.hsl.eu [5.833, 6.079, 6.368] || 10 (AS49402) ntp.hsl.eu [6.657, 7.273, 8.155] || 11 (AS49402) 193.169.48.40 [6.661, 6.691, 6.872] ||
```

- Green: "good", as far as we can see it
 - Not a judgment, only one way of visualising data
- Red or blue: path is going out of country
 - If this is a surprise: talk to your upstream(s)
- Yellow: path is not going via a local IXP
 - If this is undesired: make a new peering agreement

traceroute measurements using RIPE Atlas probes

• Steps:

- Identify ASNs in the country using RIPEstat
- Identify IXPs and IXP LANs using PeeringDB
- Construct mesh: from all (*) country's probes to each other
 *Maximum of two probes per ANS and only "public"
 probes with "good" geolocation

Hops geolocated using "OpenIPMap" database

Actions (part 1)

- Use this tool to find possible suboptimal routing and fix it
 - Find your ASN in the mesh
 - Find the person from another ASN
 - Take them out for tea:)

- To improve accuracy of this diagnostic tool
 - If your ASN is not on the graph, apply for a RIPE Atlas probe
 - Add more probes to your country to increase "resolution"
 - If you move, remember to update your probe's geolocation

Actions (part 2)

- Re-use and rewrite the code: it is free and open source software
 - https://github.com/emileaben/ixp-country-jedi

- Improve infrastructure geolocation: contribute data to OpenIPMap!
 - https://marmot.ripe.net/openipmap/
 - https://github.com/RIPE-Atlas-Community/openipmap

